Flow Characteristics of Fluid Droplet Obtained From Air Assisted Atomizer

Author(s):  
Pipatpong Watanawanyoo ◽  
Hirofumi Mochida ◽  
Hiroyuki Hirahara ◽  
Sumpun Chaitep

Air assisted atomizer system was designed and developed for fuel injection. The present purpose is to utilize a low pressure in supplying of atomized fuel. Distilled water was used as test liquid on the experiments for the system of atomization. The results revealed air assisted atomizer had a capability to inject the test liquid in the range of the rates of 0.0019–0.00426 kg/s, with the use of air pressure supplied from 68.9 to 689 kPa. In this research, the test liquid supply pressure was kept constant and the air flow rate through the atomizer was varied over a range of air supply pressure to obtain the variation in air liquid mass flow ratio (ALR). The spray solidity was studied by taking pictures of the spray at different liquid air supply pressures. The experimental investigations suggest that spray cone angle tends to increase with increasing in air liquid mass flow ratio because the kinetic energy of the flow keeps on increasing. The solid cone spray has a pattern of penetration depth between 408–446 mm. and cone angle between 14.5–23.6°. It was observed that spray formed the solid cone at all the operating conditions.

Author(s):  
Deify Law ◽  
Thomas Shepard ◽  
Paul Strykowski

Effervescent atomization is a process in which a bulk liquid is transformed into a spray of droplets by injecting a small amount of gas into the liquid before it is ejected from the atomizer. Advantages of using effervescent atomization method include larger exit orifices to reduce clogging issues, reduced injection pressures, and lower gas to liquid mass flow ratios (GLR) as compared to pressure or air-blast atomizers [1]. Effervescent atomization has been used in a number of applications including agricultural sprays, paint sprays, combustion for lowering pollutant emissions, spray cooling for gas turbine and medical applications, waste incineration, and process industry applications. In the present work, the near-nozzle exit characteristics of an air-water effervescent atomizer at gas to liquid mass flow ratio such as 0.25% are investigated numerically through two-fluid Eulerian-Eulerian ensemble-averaged modeling. The two-fluid model is solved through the finite volume method. Numerical simulations are performed using the commercial computational fluid dynamics (CFD) code ANSYS FLUENT. The effects of effective (average) air bubble diameter size inside the atomizer, exit nozzle diameter, and injection pressures on the average liquid water jet width are presented. An optimal bubble size is observed for increasing the average liquid jet width which leads to enhanced jet breakup at downstream of the nozzle. The water volume fraction profiles within the sprays are also reported. The numerical results are compared with experimental visualizations and jet-width measurements to further the understanding of the spray characteristics of effervescent atomization for atomizer design.


Author(s):  
Shaji S. Manipurath

The development of higher thermal stability fuels and the development of onboard fuel deoxygenation systems may permit the preheating of fuel up to about 755 K before the onset of pyrolysis. At a sufficiently high fuel temperature for a given combustion chamber pressure, the flash vaporization of liquid or supercritical state fuel can ensue upon injection into the chamber. The performance of standard aviation turbine engine fuel nozzles, designed for mechanically breaking up liquid sprays, may thus be significantly altered by the employment of severely preheated fuel. An evaluation of heated and superheated Jet A-1 sprays from a pressure-swirl atomizer was implemented in a purpose-built test facility. Laser sheet imaging of the spray yielded simultaneous axial cross-sectional maps of Mie-scatter and fluorescence signals. In addition, particle image velocimetry was also used to measure the spray droplet velocity-field. The results indicated that increasing the fuel’s dimensionless level of superheat ΔT* from −1.8 to 0.6 yielded significant changes in the spray structure; specifically, finer droplet sizes, a more uniform dropsize distribution across the spray, increased spray cone angle till about ΔT* = −0.8 followed by a contraction thereafter, marginally increased spray penetration, and significantly higher localised near nozzle tip droplet velocities. The measurements supported the hypothesis that the initial hollow-cone spray structure evolves to a near solid-cone structure with a central vapour core as the fuel is superheated.


Author(s):  
Liu Dian-Kui ◽  
Ji Le-Jian

The flow within a centrifugal rotor has strong characteristics of three-dimensional effect. A procedure called “stream-surface coordinates iteration” for the calculation of complete three dimensional flow in turbo-machinery is first described. Splitter blade techniques have been used in many rotors, especially in centrifugal compressors and pumps with high flow capacity. The difficulty of the calculation of the flow field for this type of rotor lies on that the mass flow ratio between the two sub-channels is unknown for the given total flow capacity. In the second part of this paper, an assumption about how to determine this mass flow ratio and a procedure to calculate the complete three-dimensional flow are presented. Finally, some design criteria about the splitter blades are put forward. Experimental data from two centrifugal pump impellers equipped with different splitter blades are also given to demonstrate the availability of the present calculation method.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Chao Zhou ◽  
Howard Hodson

Experimental, analytical, and numerical methods have been employed to study the aerodynamic performance of four different cooled tips with coolant mass ratios between 0% and 1.2% at three tip gaps of 1%, 1.6%, and 2.2% of the chord. The four cooled tips are two flat tips with different coolant holes, a cooled suction side squealer tip and a cooled cavity tip. Each tip has ten coolant holes with the same diameter. The uncooled cavity tip produces the smallest loss among all uncooled tips. On the cooled flat tip, the coolant is injected normally into the tip gap and mixes directly with flow inside the tip gap. The momentum exchange between the coolant and the flow that enters the tip gap creates significant blockage. As the coolant mass flow ratio increases, the tip leakage loss of the cooled flat tip first decreases and then increases. For the cooled cavity tip, the blockage effect of the coolant is not as big as that on the cooled flat tip. This is because after the coolant exits the coolant holes, it mixes with flow in the cavity first and then mixes with tip flow in the tip gap. The tip leakage loss of the cooled cavity tip increases as the coolant mass flow ratio increase. As a result, at a tip gap of 1.6% of the chord, the cooled cavity tip gives the lowest loss. At the smallest tip gap of 1% of the chord, the cooled flat tip produces less loss than the cooled cavity tip when the coolant mass flow ratios larger than 0.23%. This is because with the same coolant mass flow ratio, a proportionally larger blockage is created at the smallest tip gap. At the largest tip gap of 2.2% of the chord, the cavity tip achieves the best aerodynamic performance. This is because the effect of the coolant is reduced and the benefits of the cavity tip geometry dominate. At a coolant mass flow ratio of 0.55%, the cooled flat tips produce a lower loss than the cavity tip at tip gaps less than 1.3% of the chord. The cooled cavity tip produces the least loss for tip gaps larger than 1.3% of the chord. The cooled suction side squealer has the worst aerodynamic performance for all tip gaps studied.


2013 ◽  
Vol 25 (7) ◽  
pp. 1715-1718 ◽  
Author(s):  
王殿恺 Wang Diankai ◽  
洪延姬 Hong Yanji ◽  
李倩 Li Qian

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Jing Yang ◽  
Luis San Andrés ◽  
Xueliang Lu

AbstractHigh-performance centrifugal compressors presently favor pocket damper seals (PDSs) as a choice of secondary flow control element offering a large effective damping coefficient to mitigate rotor subsynchronous whirl motions. Current and upcoming multiple-phase compression systems in subsea production facilities must demonstrate long-term operation and continuous availability, free of harmful rotor instabilities. Plain annular seals and labyrinth (LABY) seals are notoriously bad choices, whereas a PDS, by stopping the circulation of trapped liquid, operates stably. This paper presents experimental and computational fluid dynamics (CFD) results for the leakage and dynamic force coefficients obtained in a dedicated test facility hosting a fully partitioned PDS (FPPDS), four ribbed and with eight pockets per cavity. The test PDS, operating at a rotor speed 5250 rpm (surface speed 35 m/s) and under a supply pressure/discharge pressure ratio up to 3.2, is supplied with a mixture of air and ISO VG 10 oil whose maximum liquid volume fraction (LVF) is 2.2%, equivalent to a liquid mass fraction of 84%. When supplied with just air (dry condition), the measured leakage increases nonlinearly with supply pressure. Under a wet gas condition, the recorded mass flow increases on account of the large difference in density between the liquid and the gas. CFD-derived mass flow rates for both dry and wet gas conditions agree with the measured ones. The test dry gas PDS produces a direct dynamic stiffness (HR) increasing with frequency, whereas the direct damping (C) and cross-coupled dynamic stiffness (hR) coefficients remain relatively constant. The CFD-predicted damping agrees best with the test C albeit overpredicting HR at low excitation frequencies and hR at all frequencies (<175 Hz ∼ twice rotor speed). Under a wet gas condition with LVF  =  0.4%, the test force coefficients show great variability over the excitation frequency range; in particular, HR < 0, though growing with frequency due to the large liquid mass fraction. The CFD predictions, on the other hand, produce a dynamic direct stiffness HR > 0 for all frequencies. Both experimental hR and C for the wet gas PDS are larger than their counterparts for the dry gas seal. The CFD-predicted C and hR, wet versus dry, show a modest growth, yet remaining lower than the test data. The CFD-derived flow field for a wet gas condition shows that the seal radial partition walls (ridges) reduce the circumferential flow velocity and liquid accumulation within a pocket. Both the test data and the CFD prediction show that the magnitude of the flexibility function for the PDS test system reduces when the two-component mixture flows through the seal, hence revealing the additional effective damping, more pronounced for the test data rather than that from the predictions. Further work, experimental and CFD based, will continue to advance the technology of wet gas seals while bridging the gap between test data and computational physics model simulations.


Author(s):  
Jing Yang ◽  
Luis San Andrés ◽  
Xueliang Lu

Abstract High performance centrifugal compressors presently favor pocket damper seals (PDSs) as a choice of secondary flow control element offering a large effective damping coefficient to mitigate rotor sub synchronous whirl motions. Current and upcoming multiple-phase compression systems in subsea production facilities must demonstrate long term operation and continuous availability, free of harmful rotor instabilities. Plain annular seals and labyrinth seals are notoriously bad choices, whereas a PDS, by stopping the circulation of trapped liquid, operates stably. This paper presents experimental and computational fluid dynamics (CFD) results for the leakage and dynamic force coefficients obtained in a dedicated test facility hosting a fully partitioned PDS, four ribbed and with eight pockets per cavity. The test PDS, operating at a rotor speed 5,250 rpm (surface speed 35 m/s) and under a supply pressure/discharge pressure ratio up to 3.2, is supplied with a mixture of air and ISO VG 10 oil whose maximum liquid volume fraction (LVF) is 2.2%, equivalent to a liquid mass fraction of 84%. When supplied with just air (dry condition), the measured leakage increases nonlinearly with supply pressure. Under a wet gas condition, the recorded mass flow increases on account of the large difference in density between the liquid and the gas. CFD derived mass flow rates for both dry and wet gas conditions agree with the measured ones. The test dry gas PDS produces a direct dynamic stiffness (HR) increasing with frequency whereas the direct damping (C) and cross-coupled dynamic stiffness (hR) coefficients remain relatively constant. The CFD predicted damping agrees best with the test C albeit over predicting HR at low excitation frequencies and hR at all frequencies (< 175 Hz ∼ twice rotor speed). Under a wet gas condition with LVF = 0.4%, the test force coefficients show great variability over the excitation frequency range; in particular HR < 0, though growing with frequency due to the large liquid mass fraction. The CFD predictions, on the other hand, produce a dynamic direct stiffness HR > 0 for all frequencies. Both experimental hR and C for the wet gas PDS are larger than their counterparts for the dry gas seal. The CFD predicted C and hR, wet vs. dry, show a modest growth, yet remaining lower than the test data. The CFD derived flow field for a wet gas condition shows the seal radial partition walls (ridges) reduce the circumferential flow velocity and liquid accumulation within a pocket. Both the test data and CFD prediction show that the magnitude of the flexibility function for the PDS test system reduces when the two component mixture flows through the seal, hence revealing the additional effective damping, more pronounced for the test data rather than that from the predictions. Further work, experimental and CFD based, will continue to advance the technology of wet gas seals while bridging the gap between test data and computational physics model simulations.


Author(s):  
Zhiqiang Yu ◽  
Jianjun Liu ◽  
Chen Li ◽  
Baitao An

Abstract Numerical investigations have been performed to study the effect of incidence angle on the aerodynamic and film cooling performance for the suction surface squealer tip with different film-hole arrangements at τ = 1.5% and BR = 1.0. Meanwhile, the full squealer tip as baseline is also investigated. Three incidence angles at design condition (0 deg) and off-design conditions (± 7 deg) are investigated. The suction surface, pressure surface, and the camber line have seven holes each, with an extra hole right at the leading edge. The Mach number at the cascade inlet and outlet are 0.24 and 0.52, respectively. The results show that the incidence angle has a significant effect on the tip leakage flow characteristics and coolant flow direction. The film cooling effectiveness distribution is altered, especially for the film holes near the leading edge. When the incidence angle changes from +7 deg to 0 and −7 deg, the ‘re-attachment line’ moves downstream and the total tip leakage mass flow ratio decreases, but the suction surface tip leakage mass flow ratio near leading edge increases. In general, the total tip leakage mass flow ratio for suction surface squealer tip is 1% greater than that for full squealer tip at the same incidence angle. The total pressure loss coefficient of suction surface squealer tip is larger than that for full squealer tip. The full squealer tip with film holes near suction surface and the suction surface squealer tip with film hole along camber line show high film cooling performance, and the area averaged film cooling effectiveness at positive incidence angle +7 deg is higher than that at 0 and −7 deg. The coolant discharged from film holes near pressure surface only cools narrow region near pressure surface.


Author(s):  
Xiongjie Fan ◽  
Cunxi Liu ◽  
Fuqiang Liu ◽  
Qianpeng Zhao ◽  
Jinhu Yang ◽  
...  

In this paper, the optimization method we obtained from dual-orifice atomizers previously is used to design and optimize new dual-orifice atomizers, whereas there are some differences between the new dual-orifice atomizer and dual-orifice atomizer used in Part I. For example, the mass flow is much smaller, there is an expansion angle at pilot nozzle to regulate pilot stage spray cone angle, and there is no recess length between main nozzle and pilot nozzle. Influences of structure parameters on mass flow, spray cone angle and liquid film fusion and separation are investigated, which are consistent with the expectation. Structure parameters that meet performance requirements of dual-orifice atomizer are analyzed. In addition, a new phenomenon has been found is that liquid film oscillation appears with the increase of Δ P, which should be avoided during the design and optimization of new atomizers. Pilot liquid film oscillation will influence the development of dual-orifice liquid film. Pilot swirling groove depth and expansion angle of pilot nozzle are key parameters that influence liquid film oscillation. Conclusions in this paper can be used to guide the design and optimization of new dual-orifice atomizers.


Sign in / Sign up

Export Citation Format

Share Document