mass flow ratio
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Kun Xiao ◽  
Juan He ◽  
Zhenping Feng

Abstract This paper proposed an alternating elliptical film hole for gas turbine blade to restrain kidney vortex and enhance film cooling effectiveness, based on the multi-longitudinal vortexes generated in alternating elliptical tube. The detailed flow structures in film hole delivering tube and out of the film hole, adiabatic film cooling effectiveness distributions as well as the total pressure loss coefficient were investigated. The delivering tube of alternating elliptical film hole consists of two straight sections and a transition section. In the straight sections, the cross section of the film hole is elliptical, and in the transition section, along flow direction, the major axis gradually shortened into the minor axis, and the minor axis gradually expanded to the major axis. But, the cross-section area of the film hole kept constant. Numerical simulations were performed by using 3D steady flow solver of Reynolds-averaged Navier-Stokes equations (RANS) with the SST k-ω turbulence model. To reveal the mechanism of kidney vortex suppression and film cooling effectiveness enhancement, the simulation results were compared with the cylindrical film hole set as the baseline at different mass flow ratios (MFR). Besides, the aerodynamic characteristics of these two kinds of film holes were also investigated. The results showed that obvious jet effect could be found in the cylindrical film hole, and the coolant mainly flowed along the upper wind wall, then interacted with the main flow, forming a strong kidney vortex after flowing out, which made the coolant to lift away from the wall surface and reduced the cooling effectiveness. The alternating elliptical film hole had a good inhibition impact on the jet effect in the hole due to the longitudinal vortices, which made the film adhere to the wall surface better after the coolant flowed out. The longitudinal vortices generated by alternating elliptical film hole have the opposite rotation direction to the vorticity of the kidney vortices, thus the kidney vortices were restrained to a certain extent. The height of kidney vortices is lower, and the size of kidney vortices is also smaller. As a result, the film cooling effectiveness of alternating elliptical film hole is distinctly higher than that of the cylindrical film hole, and the enhancement effect is more significant at higher mass flow ratio. In addition, the total pressure loss coefficient of alternating elliptical film hole is only slightly higher than the cylindrical film hole at the mass flow ratio of 1%, 2% and 3%, and is even lower at the mass flow ratio of 4%, thus inducing an excellent comprehensive performance.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040074
Author(s):  
Jian Zhai ◽  
Chen-An Zhang ◽  
Fa-Min Wang ◽  
Wei-Wei Zhang

Hypersonic inlet is an important part of the propulsion system of hypersonic air-breathing vehicles. However, the performance of the two-dimensional hypersonic inlet, a major type of hypersonic inlets, is considerably deteriorated for lateral spillage. In this study, waverider-configuration chines mounted on the lateral sides of a two-dimensional three-staged external-compression hypersonic inlet for a Mach number of 6.0 are investigated to determine their ability to alleviate the lateral spillage. The chines are built by using a waverider design method. The numerical results suggest that a severe flow spillage induced by three-dimensional effect shows up near the lateral edge of the inlet without chines, which degrades the mass-flow ratio and flow uniformity. In contrast, the waverider-configuration chines effectively alleviate the lateral spillage. Consequently, the mass-flow ratio and the flow uniformity are both improved significantly.


Author(s):  
Zhiqiang Yu ◽  
Jianjun Liu ◽  
Chen Li ◽  
Baitao An

Abstract Numerical investigations have been performed to study the effect of incidence angle on the aerodynamic and film cooling performance for the suction surface squealer tip with different film-hole arrangements at τ = 1.5% and BR = 1.0. Meanwhile, the full squealer tip as baseline is also investigated. Three incidence angles at design condition (0 deg) and off-design conditions (± 7 deg) are investigated. The suction surface, pressure surface, and the camber line have seven holes each, with an extra hole right at the leading edge. The Mach number at the cascade inlet and outlet are 0.24 and 0.52, respectively. The results show that the incidence angle has a significant effect on the tip leakage flow characteristics and coolant flow direction. The film cooling effectiveness distribution is altered, especially for the film holes near the leading edge. When the incidence angle changes from +7 deg to 0 and −7 deg, the ‘re-attachment line’ moves downstream and the total tip leakage mass flow ratio decreases, but the suction surface tip leakage mass flow ratio near leading edge increases. In general, the total tip leakage mass flow ratio for suction surface squealer tip is 1% greater than that for full squealer tip at the same incidence angle. The total pressure loss coefficient of suction surface squealer tip is larger than that for full squealer tip. The full squealer tip with film holes near suction surface and the suction surface squealer tip with film hole along camber line show high film cooling performance, and the area averaged film cooling effectiveness at positive incidence angle +7 deg is higher than that at 0 and −7 deg. The coolant discharged from film holes near pressure surface only cools narrow region near pressure surface.


Author(s):  
Yao Yunjia ◽  
Zhu Peiyuan ◽  
Tao Zhi ◽  
Song Liming ◽  
Li Jun

Abstract Based on the infrared temperature measurement technology, in this paper, the effect of the purge flow from the upstream slot on the film cooling performance of the annular cascade endwall was studied experimentally. GE‘s E3 turbine first stage stator blades is selected as the experimental reference blade type in this experiment. In the current experiment, effects of different slot locations, slot ejection angles and slot profiles on the endwall film cooling effectiveness were taken into account. Under the influence of endwall secondary flow, the film cooling is mainly concentrated on the front part of the channel and close to the suction side of the blade, while there is almost no cooling effect close to the pressure side of the blade in the channel. With the increase of the distance between the blade leading edge and the slot, the endwall film cooling performance is reduced. While the distance increasing from 0.15Cx to 0.45Cx, and the peak endwall film cooling effectiveness is reduced by 78%, 68% and 58% respectively when the mass flow ratio (MFR) is 1.0%, 1.5%, and 2.0%. As the slot ejection angle is reduced, the endwall film cooling performance can be effectively improved. When the slot ejection angle increased from 45° to 90°, the peak endwall film cooling effectiveness decreases by 17%, 15%, and 13% respectively at the mass flow ratio (MFR) = 1.0%,1.5% and 2.0%. And the convergent slot can effectively improve the endwall cooling film formed by slot jet compared to the reference slot. When the mass flow ratio are MFR = 1.0%, 1.5%, and 2.0%, the peak endwall film cooling effectiveness at the convergent slot is increased by 50%, 20%, and 15% comparing to the reference slot.


Author(s):  
Jin Wu ◽  
Li Zhang ◽  
Li-jian Cheng ◽  
Ru Jiang ◽  
Zhong-yi Fu ◽  
...  

This paper researches on the effects of Reynolds number and mass flow ratio on the film cooling characteristics at high turbulence intensity (Tu = 15%). The experiment adopted an actual three-dimensional twisted vane and presents the film cooling characteristics on full-coverage film surface in a two-passage, linear cascade. The cooling effectiveness and heat transfer coefficient of the vane’s whole surface were obtained by using transient liquid crystal measurement technique. The transient liquid crystal is SPN/R35C1W, whose bandwidth is 2°C. There are fifteen rows of film cooling holes which have different diameter, injection angle and yaw angle. The secondary flow was supplied by two cavities. The front cavity supplied the secondary flow to thirteen rows of film cooling holes that were arranged in the suction surface, the leading edge and the front half of the pressure surface. The rear cavity supplied the secondary flow to the rear half of pressure surface which included two rows of film cooling holes. The investigated parameters are Reynolds number of 1 × 105, 1.3 × 105 and 1.6 × 105 and the mass flow ratio of MFR = 5.5%∼12.5% (6 cases). The data recorded in the experiment was analyzed with MATLAB. Results show that the combined effects of mass flow ratio and channel vortex are the maintain reasons that influence the distribution of cooling effectiveness in the contour. Increasing the mass flow ratio can improve the film cooling effectiveness on leading edge and pressure surface, while that presents complex rule on suction surface. Increasing the Reynolds number can improve the heat transfer coefficient at the same mass flow ratio. When increasing the mass flow ratio, the heat transfer coefficient increases on leading edge and pressure surface at Re = 1.6 × 105. However, the decreases at film hole outlet region on the suction side, and not obviously changes at the film hole downstream region.


Author(s):  
Kexin Wu ◽  
Heuy Dong Kim ◽  
Yingzi Jin

Computational studies are conducted on the supersonic nozzle to investigate the possibility of utilizing counter-flow in fluidic thrust vector control. In this work, the design Mach number of the symmetric supersonic nozzle is set to be 2.5. For the validation of methodology, numerical results are compared with experimental data referred from the literature. Two-dimensional numerical simulations are based on well-assessed standard k–ɛ turbulence model with standard wall functions. Second-order accuracy is ensured to reveal more details of flow field. The system thrust ratio, deflection angle, and secondary mass flow ratio were studied for a wide range of nozzle pressure ratios and secondary pressure ratios. The results indicate that deflection angle and secondary mass flow ratio are found to be decreased with increasing nozzle pressure ratio as well as system thrust ratio. The secondary mass flow ratio and deflection angle decrease with the increase of secondary pressure ratio, and system thrust ratio increases with the increasing of secondary pressure ratio. The secondary mass flow rate remains under 2.4% of the primary flow to obtain efficient thrust vector control at high Mach number.


Sign in / Sign up

Export Citation Format

Share Document