Asymptotic Expansion Technique for Evaluating the Uncertainty of Moist-Air Density Formula

Author(s):  
Sejong Chun

Abstract Asymptotic expansion technique can evaluate the measurement uncertainty by classifying an output quantity into a measured value and its correction values. The asymptotic expansion technique combines simultaneous observations of input quantities into the output measured value. The asymptotic expansion technique is useful in evaluating a multi-variate output quantity such as the moist-air density formula (CIPM-2007), in which covariances among input quantities could complicate the evaluation of measurement uncertainty. This study demonstrates that both the Taylor’s series expansion and the chain rule of differentiation are enough to calculate the sensitivity coefficients for the CIPM-2007 air density formula. The measurement uncertainty is found to be greater than the original CIPM-2007 formula by two orders of magnitude. It is because the uncertainty of correction values come from a commercial instrument for monitoring laboratory environments. Nevertheless, the asymptotic expansion technique is useful for measurement uncertainty evaluation to avoid subtle problems of ignoring covariance of input quantities in the literature.

2015 ◽  
Vol 29 (1) ◽  
pp. 212-218 ◽  
Author(s):  
Dongxia Wang ◽  
Aiguo Song ◽  
Xiulan Wen ◽  
Youxiong Xu ◽  
Guifang Qiao

2015 ◽  
Vol 74 (9) ◽  
Author(s):  
Maziyah Mat Noh ◽  
M. R. Arshad ◽  
Rosmiwati Mohd-Mokhtar

This paper presents the controller tracking performance of Underwater Glider. The controllers are designed based on linearised model. The equations of motion are restricted to longitudinal plane. The controllers are designed and tested for the glide path moving from 45° to 30° downward and upward. The model is linearised using Taylor’s series expansion linearisation method. The controller developed here is Sliding Mode Control (SMC), and Linear Quadratic Regulator (LQR). The performance of both controllers are compared and analysed. The simulations show SMC produce better performance with about over 30% faster than LQR based its convergence time.


Sign in / Sign up

Export Citation Format

Share Document