Experimental Study of Free-Surface Deformation and Cavitation Bubble Dynamics in a Megasonic Cleaning Bath

Author(s):  
Yu Katano ◽  
Keita Ando

Abstract Underwater ultrasound causes various physical phenomena in megasonic cleaning baths, e.g. cavitation inception, bubble translation and free-surface deformation (FSD) due to acoustic radiation pressure. Because FSD is especially noticeable in the case of high frequency ultrasound due to its high directivity, it is essential to investigate the interaction between FSD and bubble translation in megasonic cleaning bath. In our present experiments, we construct a typical setup for megasonic cleaning and irradiate water with 1 MHz ultrasound vertically upwards. We visualize FSD and bubbles and analyze the height of FSD and the translational velocity in frequency space. The bubbles translate in both short and long time scales caused by bubble-bubble interaction and periodic FSD, respectively, and the latter has periodicity. The most dominant frequency component in FSD shows good agreement with that in the translational velocity of the bubbles and does not depend on whether cavitation occurs or not. Therefore, it is suggested that FSD causes periodicity of bubble translation.

1997 ◽  
Author(s):  
H. Stahl ◽  
Kevin Stultz ◽  
H. Stahl ◽  
Kevin Stultz

Author(s):  
Fumio Shimizu ◽  
Kiyoshi Hatakenaka ◽  
Kazuhiro Tanaka ◽  
Hiroshi Shigefuji ◽  
Takeshi Shimizu

A siphon phenomenon is one of gas/liquid two-phase flows including free surface deformation. Since the large-scale deformation of the free surface causes a loud noise, it is important to investigate the motion of the free surface. The purpose of the present study is to reproduce a siphon phenomenon in computer, and to analyze an internal flow field of the siphon phenomenon. An oscillating flow in two-dimensional U-tube was simulated to verify our computational codes, and good agreement compared with the theoretical period was obtained. After that, the numerical reproduction of a siphon phenomenon was succeeded and the behavior of the free surface was captured reasonably.


Sign in / Sign up

Export Citation Format

Share Document