A Boundary Element Method for Multi-Body Contact Problems and its Application to the Analysis of a Huge Excavator

Author(s):  
Chong-De Liu ◽  
Jiyuan Yu ◽  
Xiaoming Wang

Abstract The derivation of a boundary integral formulation and discretization technique in terms of boundary elements for the solution of multi-body contact problems has been carried out. A FORTRAN program has been developed based on this boundary element formulation and has been applied to the stress analysis of a huge caterpillar excavator woth 16 m3 bucket capacity.

2010 ◽  
Vol 20-23 ◽  
pp. 76-81 ◽  
Author(s):  
Hai Lian Gui ◽  
Qing Xue Huang

Based on fast multipole boundary element method (FM-BEM) and mixed variational inequality, a new numerical method named mixed fast multipole boundary element method (MFM-BEM) was presented in this paper for solving three-dimensional elastic-plastic contact problems. Mixed boundary integral equation (MBIE) was the foundation of MFM-BEM and obtained by mixed variational inequality. In order to adapt the requirement of fast multipole method (FMM), Taylor series expansion was used in discrete MBIE. In MFM-BEM the calculation time was significant decreased, the calculation accuracy and continuity was also improved. These merits of MFM-BEM were demonstrated in numerical examples. MFM-BEM has broad application prospects and will take an important role in solving large-scale engineering problems.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 2898-2914
Author(s):  
Miao Zhang ◽  
Luis F. Ayala

Summary In this paper, we present a novel application of the dual-reciprocity boundary-element formulation (DRBEM) to model compressible (gas) fluid flow in tight and shale-gas reservoirs containing arbitrary distributed finite- or infinite-conductivity discrete fractures. Compared with the standard boundary-element method (BEM), the DRBEM transforms the nonlinear domain integrals at the righthand side (RHS) of BEM formulations for nonlinear partial differential equations into equivalent boundary integrals. This transformation allows retention of the domain-integral-free, boundary-integral-only character of standard BEM approaches. The proposed approach is based on coupling DRBEM with the finite-volume method (FVM) in which a multidimensional system is solved by integrating over a line with random fractures. The resulting system of equations is solved simultaneously for fracture and matrix boundary conditions by combining DRBEM and FVM without invoking any approximation for pressure-dependent nonlinear terms such as gas viscosity and compressibility. Numerical examples and field cases are presented to test the validity and showcase the capabilities of the proposed approach. The proposed model provides a general framework that can be applied to a variety of well and fracture geometries and operating schedules, and it is used to analyze production behavior for these complex systems. To the best of the authors’ knowledge, this is the first successful application of the dual-reciprocity principle to the BEM analysis of massively fractured horizontal wells (MFHWs) performance in natural-gas formations in which nonlinear, pressure-dependent gas properties are captured without approximation.


2005 ◽  
Vol 72 (6) ◽  
pp. 962-965 ◽  
Author(s):  
Guangxian Shen ◽  
Xuedao Shu ◽  
Ming Li

The analysis of the forces and the rigidity of roller bearings is a multi-body contact problem, so it cannot be solved by contact boundary element method (BEM) for two elastic bodies. Based on the three-dimensional elastic contact BEM, according to the character of roller bearing, the new solution given in this paper replaces the roller body with a plate element and traction subelement. Linear elements are used in non-contact areas and a quadratic element is used in the contact area. The load distribution among the roller bodies and the load status in the inner rolling body can be extracted.


2008 ◽  
Vol 31 (17) ◽  
pp. 2029-2054 ◽  
Author(s):  
Alexey Chernov ◽  
Matthias Maischak ◽  
Ernst P. Stephan

2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Jui-Hsiang Kao

This research develops an Advance-Tracing Boundary Element Method in the time domain to calculate the waves that radiate from an immersed obstacle moving with random acceleration. The moving velocity of the immersed obstacle is multifrequency and is projected along the normal direction of every element on the obstacle. The projected normal velocity of every element is presented by the Fourier series and includes the advance-tracing time, which is equal to a quarter period of the moving velocity. The moving velocity is treated as a known boundary condition. The computing scheme is based on the boundary integral equation in the time domain, and the approach process is carried forward in a loop from the first time step to the last. At each time step, the radiated pressure on each element is updated until obtaining a convergent result. The Advance-Tracing Boundary Element Method is suitable for calculating the radiating problem from an arbitrary obstacle moving with random acceleration in the time domain and can be widely applied to the shape design of an immersed obstacle in order to attain security and confidentiality.


2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


Sign in / Sign up

Export Citation Format

Share Document