An Object Oriented Data Base and Application Management System for Integrated, Interdisciplinary Mechanical System Simulation

Author(s):  
B. Dopker ◽  
P. Murray ◽  
F. N. Choong

Abstract An object oriented data base and application management system for integrated, interdisciplinary mechanical system simulation is developed and implemented; with emphasis on flexible body dynamic simulation, stress history calculation, and fatigue life prediction. The system consists of (1) functional objects that perform a particular analysis task, (2) data objects that store data in the data base, (3) data and object management tools that manage the communication between the different parts of the system, and (4) network communication tools that communicate between different hardware platforms. Functional objects are developed and implemented for the different analysis needs of the system. Such objects (1) hide implementation details, (2) provide easy extendability, and (3) simplify use of the system. Data are organized in terms of objects, object hierarchies, and object attributes. This provides quasi data inheritance and information hiding, which allows for a data base schema that is both robust and extendable.

Author(s):  
T. S. Vepa ◽  
K. P. George ◽  
A. Raja Shekharan

The evaluation of remaining life is necessary to make optimal use of the structural capacity of in-service pavements. It simply represents the useful life left in the pavement until a failure condition is reached. Knowledge of remaining life facilitates decision making in regard to strategies for reconstruction-rehabilitation of roads, thereby leading to the efficient use of existing resources. Several methods proposed or used by various agencies to estimate the remaining lives of pavements are reviewed. They are classified under two categories: functional and structural. Making use of the Mississippi Department of Transportation pavement management system data base, survivor curves are developed for seven classes of flexible pavements with from thin to thick structures. By using these survivor curves a novel method for estimating remaining life is proposed. The reasonableness of the selected methods is examined by putting them to use in calculating the remaining lives of each of eight rigid and flexible pavement sections, all of them from the Mississippi global positioning system sections of the Strategic Highway Research Program–Long-Term Pavement Performance project (LTPP). With the structural details, falling weight deflectometer deflection data, and the distress information compiled from the LTTP information management system data base, the authors use two and four methods for rigid and flexible pavements, respectively, to determine the remaining lives. The remaining lives calculated by two methods for rigid pavements are comparable. Three of four methods for flexible pavements also generated comparable remaining lives. The authors were encouraged by the results and recommend that the survivor curve approach be explored further for network-level remaining life calculations. The reliabilities of various techniques currently available for the remaining life calculation are discussed.


1996 ◽  
Vol 35 (01) ◽  
pp. 52-58 ◽  
Author(s):  
A. Mavromatis ◽  
N. Maglaveras ◽  
A. Tsikotis ◽  
G. Pangalos ◽  
V. Ambrosiadou ◽  
...  

AbstractAn object-oriented medical database management system is presented for a typical cardiologic center, facilitating epidemiological trials. Object-oriented analysis and design were used for the system design, offering advantages for the integrity and extendibility of medical information systems. The system was developed using object-oriented design and programming methodology, the C++ language and the Borland Paradox Relational Data Base Management System on an MS-Windows NT environment. Particular attention was paid to system compatibility, portability, the ease of use, and the suitable design of the patient record so as to support the decisions of medical personnel in cardiovascular centers. The system was designed to accept complex, heterogeneous, distributed data in various formats and from different kinds of examinations such as Holter, Doppler and electrocardiography.


Sign in / Sign up

Export Citation Format

Share Document