On the Extraction of Kinematic Behavior From Optimal Compliant Topologies With Application to Number Synthesis of Linkages

Author(s):  
Anupam Saxena ◽  
G. K. Ananthasuresh

Abstract This paper presents a number of systematically designed compliant topologies and discusses how the intrinsic kinematic behavior can be extracted from them. This is then applied to the number synthesis of linkages. Many techniques developed for number synthesis of linkages enumerate numerous possible kinematic chains, but few can select the best configuration among them. A systematic computational approach that can select the best configuration based on kinetostatic design specifications is presented here. This is a serendipitous result that transpired when two well-developed design techniques for compliant mechanisms were combined. A number of examples with non-intuitive design specifications are included to illustrate the new approach to number synthesis. The examples also illustrate that the kinematic behavior is aptly captured in the elastic mechanics-based topology optimization method to compliant mechanism design. Dimensional synthesis is also accomplished in the same procedure, which is an added benefit of this approach.

2003 ◽  
Vol 125 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Anupam Saxena ◽  
G. K. Ananthasuresh

This paper presents a number of systematically designed compliant topologies and discusses how the intrinsic kinematic behavior can be extracted from them. This is then applied to the number synthesis of linkages. Many techniques developed for number synthesis of linkages enumerate numerous possible kinematic chains, but few can select the best configuration among them. A systematic computational approach that can select the best configuration based on kinetostatic design specifications is presented here. This is a serendipitous result that transpired when two well-developed design techniques for compliant mechanisms were combined. A number of examples with nonintuitive design specifications are included to illustrate the new approach to the number synthesis. The examples also illustrate that the kinematic behavior is aptly captured in the elastic mechanics-based topology optimization method to compliant mechanism design. Dimensional synthesis is also accomplished in the same procedure, which is an added benefit of this approach.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Hong Zhou

The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.


Author(s):  
Pratheek Bagivalu Prasanna ◽  
Ashok Midha ◽  
Sushrut G. Bapat

Abstract Understanding the kinematic properties of a compliant mechanism has always proved to be a challenge. A concept of compliance number offered earlier emphasized the development of terminology that aided in its determination. A method to evaluate the elastic degrees of freedom associated with the flexible segments/links of a compliant mechanism using the pseudo-rigid-body model (PRBM) concept is provided. In this process, two distinct classes of compliant mechanisms are developed involving: (i) Active Compliance and (ii) Passive Compliance. Furthermore, these also aid in a better characterization of the kinematic behavior of a compliant mechanism. A more lucid interpretation of the significance of compliance number is provided. Applications of this method to both active and passive compliant mechanisms are exemplified. Finally, an experimental procedure that aids in visualizing the degrees of freedom as calculated is presented.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Kai Zhao ◽  
James P. Schmiedeler

This paper uses rigid-body mechanism topologies to synthesize fully distributed compliant mechanisms that approximate a shape change defined by a set of morphing curves in different positions. For a shape-change problem, a rigid-body mechanism solution is generated first to provide the base topology. This base topology defines a preselected design space for the structural optimization in one of two ways so as to obtain a compliant mechanism solution that is typically superior to the local minimum solutions obtained from searching more expansive design spaces. In the first strategy, the dimensional synthesis directly determines the optimal size and shape of the distributed compliant mechanism having exactly the base topology. In the second strategy, an initial mesh network established from the base topology is used to generate different topologies (in addition to the base), and an improved design domain parameterization scheme ensures that only topologies with well-connected structures are evaluated. The deformation of each generated compliant mechanism is evaluated using geometrically nonlinear finite element analysis (FEA). A two-objective genetic algorithm (GA) is employed to find a group of viable designs that trade off minimizing shape matching error with minimizing maximum stress. The procedure's utility is demonstrated with three practical examples—the first two approximating open-curve profiles of an adaptive antenna and the third approximating closed-curve profiles of a morphing wing.


Author(s):  
Hima Maddisetty ◽  
Mary Frecker

A topology optimization method is developed to design a piezoelectric ceramic actuator together with a compliant mechanism coupling structure for dynamic applications. The objective is to maximize the mechanical efficiency with a constraint on the capacitance of the piezoceramic actuator. Examples are presented to demonstrate the effect of considering dynamic behavior compared to static behavior, and the effect of sizing the piezoceramic actuator on the optimal topology and the capacitance of the actuator element. Comparison studies are also presented to illustrate the effect of damping, external spring stiffness, and driving frequency. The optimal topology of the compliant mechanism is shown to be dependent on the driving frequency, the external spring stiffness, and if the piezoelectric actuator element is considered as design or non-design. At high driving frequencies, it was found that the dynamically optimized structure is very near resonance.


1999 ◽  
Vol 121 (2) ◽  
pp. 229-234 ◽  
Author(s):  
J. A. Hetrick ◽  
S. Kota

Compliant mechanisms are jointless mechanical devices that take advantage of elastic deformation to achieve a force or motion transformation. An important step toward automated design of compliant mechanisms has been the development of topology optimization techniques. The next logical step is to incorporate size and shape optimization to perform dimensional synthesis of the mechanism while simultaneously considering practical design specifications such as kinematic and stress constraints. An improved objective formulation based on maximizing the energy throughput of a linear static compliant mechanism is developed considering specific force and displacement operational requirements. Parametric finite element beam models are used to perform the size and shape optimization. This technique allows stress constraints to limit the maximum stress in the mechanism. In addition, constraints which restrict the kinematics of the mechanism are successfully applied to the optimization problem. Resulting optimized mechanisms exhibit efficient mechanical transmission and meet kinematic and stress requirements. Several examples are given to demonstrate the effectiveness of the optimization procedure.


2020 ◽  
Vol 12 (6) ◽  
Author(s):  
Hylke Kooistra ◽  
Charles J. Kim ◽  
Werner W. P. J. van de Sande ◽  
Just L. Herder

Abstract The primary compliance vector (PCV) captures the dominant kinematic behavior of a compliant mechanism. Its trajectory describes large deformation mechanism behavior and can be integrated in an optimization objective in detailed compliant mechanism design. This paper presents a general framework for the optimization of the PCV path, the mechanism trajectory of lowest energy, using a unified stiffness characterization and piecewise curve representation. We present a meaningful objective formulation for the PCV path that evaluates path shape, location, orientation, and length independently and apply the framework to two design examples. The framework is useful for design of planar and shell compliant mechanisms that traverse a specified mechanism trajectory and that are insensitive to load perturbations.


Author(s):  
Hae Chang Gea ◽  
Jaehyun Kwon

A mechanism is a device transmits motion in a predetermined manner in order to accomplish specific objectives. Mechanism design can be divided into three steps: type synthesis, number synthesis and dimensional synthesis, where the number synthesis is also called topological synthesis. In this paper, a new approach for topological synthesis and dimensional synthesis of linkage mechanism design with pin joints is presented. This approach is based on the discrete element approach which always provides clear definitions of number of linkages and joints. In order to extend its applications beyond the compliant mechanism, a novel analysis method based on the principle of minimum potential energy for linkage topology optimization is employed. Unlike the traditional FEM based approaches, this novel analysis method can be applied to multiple joint linkage designs directly. Genetic Algorithm is chosen as the optimizer. Finally, a few design examples from the proposed method are presented.


Author(s):  
Joel A. Hetrick ◽  
Sridhar Kota

Abstract Compliant mechanisms are jointless mechanical devices that take advantage of elastic deformation to achieve a force or motion transformation. A milestone toward systematic design of compliant mechanisms has been the development of topology optimization techniques. The next logical step is to incorporate size and shape optimization to identify the exact dimensional form of the mechanism. A new objective formulation based on maximizing the mechanical efficiency of a compliant mechanism is developed in order to perform the size and shape optimization. An advantage of this formulation is that precise control over the mechanism’s mechanical or geometric advantage can be enforced during optimization. Finite element beam models are used to perform dimensional synthesis of planar compliant mechanisms. This technique allows stress constraints to limit the maximum stress in the mechanism which improves the mechanism’s durability and flexibility. Resulting optimized mechanisms exhibit efficient mechanical transmission and meet kinematic and stress requirements. Several examples are given to demonstrate the effectiveness of the optimization procedure.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Hong Zhou ◽  
Pranjal P. Killekar

The modified quadrilateral discretization model for the topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. There is a certain location shift between two neighboring rows of quadrilateral design cells. This modified quadrilateral discretization model allows any two contiguous design cells to share an edge whether they are in the horizontal, vertical, or diagonal direction. Point connection is completely eliminated. In the proposed topology optimization method, design variables are all binary, and every design cell is either solid or void to prevent gray cell problem that is usually caused by intermediate material states. Local stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum. No postprocessing is required for topology uncertainty caused by either point connection or gray cell. The presented modified quadrilateral discretization model and the proposed topology optimization procedure are demonstrated by two synthesis examples of compliant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document