dimensional synthesis
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 85)

H-INDEX

25
(FIVE YEARS 2)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 203
Author(s):  
Badreddine Ayadi ◽  
Lotfi Ben Said ◽  
Mohamed Boujelbene ◽  
Sid Ali Betrouni

The present paper develops a new approach for manufacturing tolerances synthesis to allow the distribution of these tolerances over the different phases concerned in machining processes using relationships written in the tolerance analysis phase that have been well developed in our previous works. The novelty of the proposed approach is that the treatment of non-conventional surfaces does not pose a particular problem, since the toleranced surface is discretized. Thus, it is possible to study the feasibility of a single critical requirement as an example. During the present approach, we only look for variables that influence the requirements and the others are noted F (Free). These variables can be perfectly identified on the machine, which can be applied for known and unknown machining fixtures; this can be the base for proposing a normalized ISO specification used in the different machining phases of a mechanical part. The synthesis of machining tolerances takes place in three steps: (1) Analysis of the relationship’s terms, which include the influence of three main defects; the deviation on the machined surface, defects in the machining set-up, and the influence of positioning dispersions; then (2) optimization of machining tolerance through a precise evaluation of these effects; and finally (3) the optimization of the precision of the workpiece fixture, which will give the dimensioning of the machining assembly for the tooling and will allow the machining assembly to be qualified. The approach used proved its efficiency in the end by presenting the optimal machining process drawing that explains the ordered phases needed to process the workpiece object of the case study.


Robotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Raffaele Di Gregorio

A dimensional synthesis of parallel manipulators (PMs) consists of determining the values of the geometric parameters that affect the platform motion so that a useful workspace with assigned sizes can be suitably located in a free-from-singularity region of its operational space. The main goal of this preliminary dimensioning is to keep the PM far enough from singularities to avoid high internal loads in the links and guarantee a good positioning precision (i.e., for getting good kinematic performances). This paper presents a novel method for the dimensional synthesis of translational PMs (TPMs) and applies it to a TPM previously proposed by the author. The proposed method, which is based on Jacobians’ properties, exploits the fact that TPM parallel Jacobians are block diagonal matrices to overcome typical drawbacks of indices based on Jacobian properties. The proposed method can be also applied to all the lower-mobility PMs with block diagonal Jacobians that separate platform rotations from platform translations (e.g., parallel wrists).


2021 ◽  
pp. 1-13
Author(s):  
Prashant Shiwalkar ◽  
S. D. Moghe ◽  
J. P. Modak

Abstract Emerging fields like Compact Compliant Mechanisms have created newer/novel situations for application of straight line mechanisms. Many of these situations in Automation and Robotics are multidisciplinary in nature. Application Engineers from these domains are many times uninitiated in involved procedures of synthesis of mechanisms and related concepts of Path Curvature Theory. This paper proposes a predominantly graphical approach using properties of Inflection Circle to synthesize a crank rocker mechanism for tracing a coupler curve which includes the targeted straight line path. The generated approximate straight line path has acceptable deviation in length, orientation and extent of approximate nature well within the permissible ranges. Generation of multiple choices for the link geometry is unique to this method. To ease the selection, a trained Artificial Neural Network (ANN) is developed to indicate relative length of various options generated. Using studied unique properties of Inflection Circles a methodology for anticipating the orientation of the straight path vis-à-vis the targeted path is also included. Two straight line paths are targeted for two different crank rockers. Compared to the existing practice of selecting the mechanism with some compromise due to inherent granularity of the data in Atlases, proposed methodology helps in indicating the possibility of completing the dimensional synthesis. The case in which the solution is possible, the developed solution is well within the design specifications and is without a compromise.


2021 ◽  
pp. 231-325
Author(s):  
Asok Kumar Mallik ◽  
Amitabha Ghosh ◽  
Günter Dittrich

2021 ◽  
Vol 11 (18) ◽  
pp. 8739
Author(s):  
José Saúl Muñoz-Reina ◽  
Miguel Gabriel Villarreal-Cervantes ◽  
Leonel Germán Corona-Ramírez

Currently, rehabilitation systems with closed kinematic chain mechanisms are low-cost alternatives for treatment and health care. In designing these systems, the dimensional synthesis is commonly stated as a constrained optimization problem to achieve repetitive rehabilitation movements, and metaheuristic algorithms for constrained problems are promising methods for searching solutions in the complex search space. The Constraint Handling Techniques (CHTs) in metaheuristic algorithms have different capacities to explore and exploit the search space. However, the study of the relationship in the CHT performance of the mechanism dimensional synthesis for rehabilitation systems has not been addressed, resulting in an important gap in the literature of such problems. In this paper, we present a comparative empirical study to investigate the influence of four CHTs (penalty function, feasibility rules, stochastic-ranking, and ϵ-constraint) on the performance of ten representative algorithms that have been reported in the literature for solving mechanism synthesis for rehabilitation (four-bar linkage, eight-bar linkage, and cam-linkage mechanisms). The study involves analysis of the overall performance, six performance metrics, and evaluation of the obtained mechanism. This identified that feasibility rules usually led to efficient optimization for most analyzed algorithms and presented more consistency of the obtained results in these kinds of problems.


2021 ◽  
pp. 1-18
Author(s):  
I-Ting Chi ◽  
Teeranoot Chanthasopeephan ◽  
Dung-An Wang

Abstract A compliant gripper with nearly parallel gripping motion is developed by a topology synthesis and a dimensional synthesis approach. The topology synthesis process can generate linkage type compliant mechanisms. Suitable boundary conditions of the topology synthesis process are selected to achieve the desired functions of the device. The dimensional synthesis is based on an evolutionary optimal design process. In order to meet various design goals, a nondominated multi-objective genetic algorithm is selected for the optimal design process. A kinetostaic model based on the chained beam constraint model is developed for force-displacement analysis of the designs. Efficiency and accuracy of the design approach are proved by experiments. Appropriate linkage types of compliant mechanisms may be discovered by the topology optimization process before moving on to dimensional synthesis to obtain final designs.


2021 ◽  
Author(s):  
Alejandra Rios ◽  
Eusebio E. Hernandez ◽  
Hector Lamphar ◽  
S. Ivvan Valdez

2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110408 ◽  
Author(s):  
Maja Čavić ◽  
Marko Penčić ◽  
Dragana Oros ◽  
Dijana Čavić ◽  
Marko Orošnjak ◽  
...  

The paper presents the type and dimensional synthesis of intermittent mechanisms for use in a thermoforming machine high-capacity stacking apparatus. The aim of this paper is to realize the intermittent motion of the working part of the stacker – conveyor, with a completely mechanical system that should enable the adjustment of the operating parameters of the stacker at a constant motor speed. Mechanical control ensures high positioning accuracy of the product ejection panel, as well as high repeatability of the motion cycle of the conveyor, which is key. Based on the set requirements, the concept of a planar mechanism of simple structure was chosen, which enables oscillatory movement of the output link for continuous motion of the input link, in combination with a one-way clutch (OWC). Four types of intermittent mechanisms have been proposed. However, multiple configurations of the same mechanism type can achieve the same output link motion interval, which is why 3 configurations for each mechanism type are considered, with a total of 4 output link motion intervals, which is 12 potential solutions for only one mechanism type. Afterwards, dimensional synthesis was performed for each type of mechanism by using the optimization method. Based on the analysis of the results, all of the mechanism types are potentially usable. After additional analyses, the optimal solution was chosen.


Author(s):  
PENGSHUAI SHI ◽  
LEWEI TANG

A new design of gait rehabilitation robot with cable-suspended configuration is proposed. Due to the under-constrained nature, it enables reducing the constraint feeling of patients. Cables are attached to cuffs mounted on the leg. A detailed mechanical design is presented and a kinematics model is developed. Dimensional synthesis is performed in two steps. First, the cable disposition should be determined within a range to maintain cable-suspended configuration using the minimum 2-norm solution of tensions. Second, the optimal cable disposition is achieved with the Root Mean Square of tension solutions. Gait rehabilitation robots with three or four cables are discussed and compared to determine dimensional parameters in terms of the locations of pulleys. A simulation model with ADAMS software is presented and the cable module is utilized to imitate the cable-driven system in real. Tension distribution is obtained from the simulation model, which is employed in comparison with the calculated values. The simulation results demonstrate the effectiveness of the presented method.


Sign in / Sign up

Export Citation Format

Share Document