Hybrid Analysis Method for Reliability-Based Design Optimization

Author(s):  
Kyung K. Choi ◽  
Byeng D. Youn

Abstract Reliability-Based Design Optimization (RBDO) involves evaluation of probabilistic constraints, which can be done in two different ways, the Reliability Index Approach (RIA) and the Performance Measure Approach (PMA). It has been reported in the literature that RIA yields instability for some problems but PMA is robust and efficient in identifying a probabilistic failure mode in the RBDO process. However, several examples of numerical tests of PMA have also shown instability and inefficiency in the RBDO process if the Advanced Mean Value (AMV) method, which is a numerical tool for probabilistic constraint evaluation in PMA, is used, since it behaves poorly for a concave performance function, even though it is effective for a convex performance function. To overcome difficulties of the AMV method, the Conjugate Mean Value (CMV) method is proposed in this paper for the concave performance function in PMA. However, since the CMV method exhibits the slow rate of convergence for the convex function, it is selectively used for concave-type constraints. That is, once the type of the performance function is identified, either the AMV method or the CMV method can be adaptively used for PMA during the RBDO iteration to evaluate probabilistic constraints effectively. This is referred to as the Hybrid Mean Value (HMV) method. The enhanced PMA with the HMV method is compared to RIA for effective evaluation of probabilistic constraints in the RBDO process. It is shown that PMA with a spherical equality constraint is easier to solve than RIA with a complicated equality constraint in estimating the probabilistic constraint in the RBDO process.


2003 ◽  
Vol 125 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Byeng D. Youn ◽  
Kyung K. Choi ◽  
Young H. Park

Reliability-based design optimization (RBDO) involves evaluation of probabilistic constraints, which can be done in two different ways, the reliability index approach (RIA) and the performance measure approach (PMA). It has been reported in the literature that RIA yields instability for some problems but PMA is robust and efficient in identifying a probabilistic failure mode in the optimization process. However, several examples of numerical tests of PMA have also shown instability and inefficiency in the RBDO process if the advanced mean value (AMV) method, which is a numerical tool for probabilistic constraint evaluation in PMA, is used, since it behaves poorly for a concave performance function, even though it is effective for a convex performance function. To overcome difficulties of the AMV method, the conjugate mean value (CMV) method is proposed in this paper for the concave performance function in PMA. However, since the CMV method exhibits the slow rate of convergence for the convex function, it is selectively used for concave-type constraints. That is, once the type of the performance function is identified, either the AMV method or the CMV method can be adaptively used for PMA during the RBDO iteration to evaluate probabilistic constraints effectively. This is referred to as the hybrid mean value (HMV) method. The enhanced PMA with the HMV method is compared to RIA for effective evaluation of probabilistic constraints in the RBDO process. It is shown that PMA with a spherical equality constraint is easier to solve than RIA with a complicated equality constraint in estimating the probabilistic constraint in the RBDO process.



1999 ◽  
Vol 121 (4) ◽  
pp. 557-564 ◽  
Author(s):  
J. Tu ◽  
K. K. Choi ◽  
Y. H. Park

This paper presents a general approach for probabilistic constraint evaluation in the reliability-based design optimization (RBDO). Different perspectives of the general approach are consistent in prescribing the probabilistic constraint, where the conventional reliability index approach (RIA) and the proposed performance measure approach (PMA) are identified as two special cases. PMA is shown to be inherently robust and more efficient in evaluating inactive probabilistic constraints, while RIA is more efficient for violated probabilistic constraints. Moreover, RBDO often yields a higher rate of convergence by using PMA, while RIA yields singularity in some cases.



2011 ◽  
Vol 243-249 ◽  
pp. 5717-5726
Author(s):  
Ping Yi

In a reliability-based design optimization (RBDO) problem, most of the computations are used for probabilistic constraints assessment, i.e., reliability analysis. Therefore, the effectiveness, especially the correctness of the reliability analysis is very important. If the probabilistic constraint is misjudged, the optimization iteration would have convergence problems or arrive at erratic solutions. The probabilistic constraint assessment can be carried out using either the conventional reliability index approach (RIA) or the performance measure approach (PMA). In this paper, the mathematical models to calculate the reliability index in RIA and to calculate the probabilistic performance measure (PPM) in PMA are discussed. In RIA, through estimating whether the mean-value point in safe domain or not, we should use a positive or negative reliability index respectively. In PMA, one should always minimize the performance measure to compute PPM whether the performance measure at the mean-value point is positive or negative, which puts right the wrong mathematical model in some literatures and makes it possible to produce effective and efficient approach for RBDO.



Author(s):  
Ikjin Lee ◽  
Kyung K. Choi ◽  
Liu Du ◽  
David Gorsich

In a gradient-based design optimization, it is necessary to know sensitivities of the constraint with respect to the design variables. In a reliability-based design optimization (RBDO), the constraint is evaluated at the most probable point (MPP) and called the probabilistic constraint, thus it requires the sensitivities of the probabilistic constraints at MPP. This paper presents the rigorous analytic derivation of the sensitivities of the probabilistic constraint at MPP for both First Order Reliability Method (FORM)-based Performance Measure Approach (PMA) and Dimension Reduction Method (DRM)-based PMA. Numerical examples are used to demonstrate that the analytic sensitivities agree very well with the sensitivities obtained from the finite difference method (FDM). However, since the sensitivity calculation at the true DRM-based MPP requires the second-order derivatives and additional MPP search, the sensitivity derivation at the approximated DRM-based MPP, which does not require the second-order derivatives and additional MPP search to find the DRM-based MPP, is proposed in this paper. A convergence study illustrates that the sensitivity at the approximated DRM-based MPP converges to the sensitivity at the true DRM-based MPP as the design approaches the optimum design. Hence, the sensitivity at the approximated DRM-based MPP is proposed to be used for the DRM-based RBDO to enhance the efficiency of the optimization.



Author(s):  
Young H. Park

Abstract In this paper, Reliability-Based Design Optimization (RBDO) is carried out using two distinct ways, the Reliability Index Approach (RIA) and the Performance Measure Approach (PMA). It has been theoretically explained that RIA shows instability but PMA is stable and efficient in identifying a probabilistic failure mode in the RBDO process. The PMA is compared to RIA with regard to the stable evaluation of a probabilistic constraint in the RBDO using a large deformation problem. In addition, an efficient Design Sensitivity Analysis (DSA) method is developed to support reliability analysis and reliability-based optimization for a hyper-elastic structure with factional contact using a meshfree method. A numerical result is presented to demonstrate the comparative study between RIA and PMA.



Author(s):  
Kyung K. Choi ◽  
Byeng D. Youn

Deterministic optimum designs that are obtained without consideration of uncertainty could lead to unreliable designs, which call for a reliability approach to design optimization, using a Reliability-Based Design Optimization (RBDO) method. A typical RBDO process iteratively carries out a design optimization in an original random space (X-space) and reliability analysis in an independent and standard normal random space (U-space). This process requires numerous nonlinear mapping between X- and U-spaces for a various probability distributions. Therefore, the nonlinearity of RBDO problem will depend on the type of distribution of random parameters, since a transformation between X- and U-spaces introduces additional nonlinearity to reliability-based performance measures evaluated during the RBDO process. Evaluation of probabilistic constraints in RBDO can be carried out in two different ways: the Reliability Index Approach (RIA) and the Performance Measure Approach (PMA). Different reliability analysis approaches employed in RIA and PMA result in different behaviors of nonlinearity of RIA and PMA in the RBDO process. In this paper, it is shown that RIA becomes much more difficult to solve for non-normally distributed random parameters because of highly nonlinear transformations involved. However, PMA is rather independent of probability distributions because of little involvement of the nonlinear transformation.



Sign in / Sign up

Export Citation Format

Share Document