Influence of a Synchronized Self-Shifting Clutch in a Single-Shaft Plant on the Torsional Behaviour of the Shaft Train in Case of Electrical Faults

Author(s):  
Meinolf Klocke ◽  
Stefan Verstege

Abstract Synchro-self-shifting clutches allow the construction of combined gas- and steam power plants as single-shaft systems, which are economically advantageous due to enhanced efficiency and the use of only one generator for gas- and steam turbines. However, problems occur concerning the question, how to calculate torsional stresses and take into account the operation of the clutch in case of electrical faults. The article presents calculations of shaft and coupling torques as functions of time carried out by different methods in one exemplary case of faulty operation for a 351MW/228MW combined gas and steam single-shaft plant The clutch is modelled by a nonlinear torsional stiffness. The calculations show extremely strong impacts of torque inside the clutch due to intermittend engagement and disengagement processes. However, taking additionally into account damping influences inside the clutch one obtains no significant deviations from the results of a calculation for rigid couplings instead of the clutch.

2009 ◽  
Vol 289-292 ◽  
pp. 413-420 ◽  
Author(s):  
F.J. Bolívar ◽  
L. Sánchez ◽  
M.P. Hierro ◽  
F.J. Pérez

The development of new power generation plants firing fossil fuel is aiming at achieving higher thermal efficiencies of the energy conversion process. The major factors affecting the efficiency of the conventional steam power plants are the temperature and, to a lesser extent, the pressure of the steam entering the turbine. The increased operating temperature and pressure require new materials that have major oxidation resistance. Due to this problem, in the last years numerous studies have been conducted in order to develop new coatings to enhance the resistance of steels with chromium contents between 9 and 12% wt against steam oxidation in order to allow operation of steam turbines at 650 0C. In this study, Si protective coatings were deposited by CVD-FBR on ferritic steel P-91. These type of coatings have shown to be protective at 650 0C under steam for at least 3000 hours of laboratory steam exposure under atmospheric pressure. Morphology and composition of coatings were characterized by different techniques, such as scanning electron microscopy (SEM), electron probe microanalysis, and X-ray diffraction (XRD). The results show a substantial increase of steam oxidation protection afforded by Si coating by CVD-FBR process.


Author(s):  
G. Negri di Montenegro ◽  
A. Peretto ◽  
E. Mantino

In this paper, a thermoeconomic analysis is carried out for two and three pressure level combined cycles derived from existing steam power plants. The considered steam power plants are among the most widespread in the Italian territory (70 MW, 160 MW, 320 MW power output). First of all, the gas turbine plants that best match the steam power plants’ requirements are selected among existing units. Subsequently, the thermodynamic analysis for the repowered plants is performed, taking into account the off-design working condition of some components such as, the steam turbines and the condenser. Then, the economic evaluation for the repowered plants is carried out by determining the cost per kWh, the pay back period and the internal rate of return. The analysis permits the most economic choice to be made. The thermoeconomic investigation was also performed for a new combined cycle power plant. The study has revealed that the repowering of the three existing steam power plants in two or three pressure level combined cycle plants is more convenient than building a new combined cycle with higher efficiency. It has also pointed out that the repowering of the 320 MW existing steam power plant in a three pressure level reheat combined cycle plant supplies the lowest cost per kWh among all the other repowered plants analyzed. The revamping and environment effect on the above mentioned existing steam power plants was also investigated and it resulted that this solution has a cost per kWh that is much higher than that of the repowered steam plants and the new combined cycle.


Author(s):  
Anis Haj Ayed ◽  
Martin Kemper ◽  
Karsten Kusterer ◽  
Hailu Tadesse ◽  
Manfred Wirsum ◽  
...  

Increasing the efficiency of steam power plants is important to reduce their CO2 emissions and can be achieved by increasing steam temperatures beyond 700 °C. Within the present study, the thermal behavior of a steam by-pass valve subject to cyclic operation with 700 °C steam is investigated experimentally and numerically. An innovative numerical approach was applied to predict the valve’s thermal behavior during cyclic operation, which is essential for fatigue life assessment of such a component. Validation of the applied numerical approach has shown good agreement with measurement results, indicating the potential of its application for the valve design process.


1985 ◽  
Vol 107 (3) ◽  
pp. 569-573 ◽  
Author(s):  
C. M. Harman ◽  
S. Loesch

A method for increasing the peak output of steam power plants through use of a low-pressure feedwater storage system is presented. The generalized availability analysis involves only the low-pressure turbine, low-pressure feedwater heaters, and the storage system. With daily cycling and storage charging at near base load conditions, the turnaround efficiency of the energy storage system was found to approach 100 percent. Storage system turnaround efficiency is decreased when the energy is stored during plant part-load operation.


1959 ◽  
Vol 85 (1) ◽  
pp. 81-114
Author(s):  
R. D. Chellis ◽  
E. Ireland

Sign in / Sign up

Export Citation Format

Share Document