Comparative Thermoeconomic Analysis Between Combined Cycle Units Derived From Existing Steam Power Plants and a New Combined Cycle Plant

Author(s):  
G. Negri di Montenegro ◽  
A. Peretto ◽  
E. Mantino

In this paper, a thermoeconomic analysis is carried out for two and three pressure level combined cycles derived from existing steam power plants. The considered steam power plants are among the most widespread in the Italian territory (70 MW, 160 MW, 320 MW power output). First of all, the gas turbine plants that best match the steam power plants’ requirements are selected among existing units. Subsequently, the thermodynamic analysis for the repowered plants is performed, taking into account the off-design working condition of some components such as, the steam turbines and the condenser. Then, the economic evaluation for the repowered plants is carried out by determining the cost per kWh, the pay back period and the internal rate of return. The analysis permits the most economic choice to be made. The thermoeconomic investigation was also performed for a new combined cycle power plant. The study has revealed that the repowering of the three existing steam power plants in two or three pressure level combined cycle plants is more convenient than building a new combined cycle with higher efficiency. It has also pointed out that the repowering of the 320 MW existing steam power plant in a three pressure level reheat combined cycle plant supplies the lowest cost per kWh among all the other repowered plants analyzed. The revamping and environment effect on the above mentioned existing steam power plants was also investigated and it resulted that this solution has a cost per kWh that is much higher than that of the repowered steam plants and the new combined cycle.

2000 ◽  
Author(s):  
Duck-Jin Kim ◽  
Hyun-Soo Lee ◽  
Ho-Young Kwak ◽  
Jae-Ho Hong

Abstract Exegetic and thermoeconomic analysis were performed for a 500-MW combined cycle plant and a 137-MW steam power plant without decomposition of exergy into thermal and mechanical exergy. A unit cost was assigned to a specific exergy stream of matter, regardless of its condition or state in this analysis. The calculated costs of electricity were almost same within 0.5% as those obtained by the thermoeconomic analysis with decomposition of the exergy stream for the combined cycle plant, which produces the same kind of product. Such outcome indicated that the level at which the cost balances are formulated does not affect the result of thermoeconomic analysis, that is somewhat contradictory to that concluded previously. However this is true for the gas-turbine cogeneration plant which produces different kinds of products, electricity and steam whose unit costs are dominantly affected by the mechanical and thermal exergy respectively.


Author(s):  
G. Negri di Montenegro ◽  
A. Peretto ◽  
E. Mantino

In the present paper, a thermoeconomic analysis of combined cycles derived from existing steam power plants is performed. The gas turbine employed is a reheat gas turbine. The increase of the two combustor outlet temperatures was also investigated. The study reveals that the transformation of old conventional fossil fuel power plants in combined cycle power plants with reheat gas turbine supplies a cost per kWh lower than that of a new combined cycle power plant, also equipped with reheat gas turbine. This occurs for all the repowered plants analyzed. Moreover, the solution of increasing the two combustor outlet temperatures resulted a strategy to pursue, leading, in particular, to a lower cost per kWh, Pay Back Period and to a greater Internal Rate of Return.


Author(s):  
M. J. J. Linnemeijer ◽  
J. P. Van Buijtenen

An interesting method for “boosting thermal efficiency and/or power output of an existing steam power plant is repowering through the addition of gas turbines. The forced draught fan is replaced by a gas turbine and the air heater by low-temperature economisers. This conversion will change the performance of the installation significantly. Therefore the design of the existing installation has to be reviewed based on new unit performance calculations. Since the conversion has to be economical, it is important to find a good compromise between investment and improvement of performance. This paper describes the change in performance of the installation created by the conversion in general and a number of design possibilities based on the experience gained with the realisation of a number of conversion projects. These projects show a possible efficiency increase of over 10% and a power increase of up to 30%.


2009 ◽  
Vol 289-292 ◽  
pp. 413-420 ◽  
Author(s):  
F.J. Bolívar ◽  
L. Sánchez ◽  
M.P. Hierro ◽  
F.J. Pérez

The development of new power generation plants firing fossil fuel is aiming at achieving higher thermal efficiencies of the energy conversion process. The major factors affecting the efficiency of the conventional steam power plants are the temperature and, to a lesser extent, the pressure of the steam entering the turbine. The increased operating temperature and pressure require new materials that have major oxidation resistance. Due to this problem, in the last years numerous studies have been conducted in order to develop new coatings to enhance the resistance of steels with chromium contents between 9 and 12% wt against steam oxidation in order to allow operation of steam turbines at 650 0C. In this study, Si protective coatings were deposited by CVD-FBR on ferritic steel P-91. These type of coatings have shown to be protective at 650 0C under steam for at least 3000 hours of laboratory steam exposure under atmospheric pressure. Morphology and composition of coatings were characterized by different techniques, such as scanning electron microscopy (SEM), electron probe microanalysis, and X-ray diffraction (XRD). The results show a substantial increase of steam oxidation protection afforded by Si coating by CVD-FBR process.


ijd-demos ◽  
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nida Urrohmah ◽  
Karin Caroline Kelly ◽  
Fitri Yuliani

Electric Steam Power Plants (PLTU) need coal as fuel to produce electricity. The higher the electrical energy needed to eat, the more fuel will be used. This has happened in the construction of shelters 9 and 10 Suralaya Merak-Banten steam power plant (PLTU). This development is reaping various kinds of rejection because it causes environmental damage not only in the area around the development operation but also in the Greater Jakarta area. The rejection movement was initiated by local residents and supported by international Environmental NGOs.Pembangkit Listrik Tenaga Uap (PLTU) membutuhkan batu bara sebagai bahan bakar untuk menghasilkan energi listrik. Semakin tinggi energi listrik yang dibutuhkan makan akan semakin banyak bahan bakar yang digunakan. Hal ini terjadi pada pembangunan shelter 9 dan 10 PLTU Suralaya di pulau Jawa spesifiknya di daerah Merak-Banten. Pembangunan ini menuai berbagai macam penolakan karena mengakibatkan kerusakan lingkungan tidak hanya pada wilayah sekitar operasi pembangunan namun juga pada wilayah Jabodetabek. Gerakan penolakan diinisiasi tentunya oleh warga setempat dan didukung dengan NGO Internasional penggiat isu lingkungan. 


Author(s):  
M. D. Duran ◽  
E. A. Rinco´n ◽  
M. Sa´nchez

This work describes the thermoeconomic study of an integrated combined cycle parabolic trough power plant. The parabolic trough plant will economize boiler activity, and thus the thermoeconomic optimization of the configuration of the boiler, including the parabolic trough plant, will be achieved. The objective is to obtain the optimum design parameters for the boiler and the size of the parabolic field. The proposal is to apply the methodology employed by Duran [1] and Valde´s et. al. [2], but with the inclusion of the parabolic trough plant into the optimization problem. It is important to point out that the optimization model be applied to a single pressure level configuration. For future works, it is proposed that the same model be applied to different configurations of integrated combined cycle solar power plants. As a result the optimum thermoeconomic design will be obtained for a parabolic trough plant used to economize the HRSG.


Author(s):  
Rolf H. Kehlhofer

In the past 15 years the combined-cycle (gas/steam turbine) power plant has come into its own in the power generation market. Today, approximately 30 000 MW of power are already installed or being built as combined-cycle units. Combined-cycle plants are therefore a proven technology, showing not only impressive thermal efficiency ratings of up to 50 percent in theory, but also proving them in practice and everyday operation (1) (2). Combined-cycle installations can be used for many purposes. They range from power plants for power generation only, to cogeneration plants for district heating or combined cycles with maximum additional firing (3). The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 × 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that all the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.


2020 ◽  
Vol 10 (2) ◽  
pp. 158-172
Author(s):  
M. H. Khoshgoftar Manesh ◽  
S. Kabiri ◽  
M. Yazdi ◽  
F. Petrakopoulou

Abstract In the coming years, numerous regions are expected to suffer from water scarcity. One of the technologies of great interest in facing this challenge has been the generation of freshwater through water desalination, a process that reduces the amount of salt and minerals to a standard level, making the water suitable for drinking or agricultural/industrial use. The efficiency of each desalination process depends on the concentration of salts in the raw water and the end-use of the produced water. The present study presents the exergetic and exergoeconomic analyses of the coupling of a power plant with desalination units for the simultaneous generation of energy and water in Iran. The plant is integrated, first, with a multi-stage flash (MSF) unit and, then, with a multi-effect desalination (MED) unit. We find that the cost of exergy destruction of the MED and MSF integrated plants is lower when compared to the standalone power plant by about 0.1% and 9.2%, respectively. Lastly, the freshwater production in the plant using MED is significantly higher than that in the plant with MSF (1,000 versus 1,521 kg/s).


2000 ◽  
Vol 123 (4) ◽  
pp. 717-726 ◽  
Author(s):  
S. Pelster ◽  
D. Favrat ◽  
M. R. von Spakovsky

Combined cycle power plants are currently one of the most important options for the construction of new generating capacity as well as for the replacement and repowering of existing units. Due to the complexity and the large number of options and parameters available to such plants, finding optimized solutions for system synthesis, design, and operation is very difficult if not impossible with these traditional methods such as case and parametric tradeoff studies. This is especially true when advanced options as well as thermodynamic, economic, and environmental criteria are considered. A thermoeconomic environomic methodology to deal with these difficulties is presented here. Results for the application of this methodology to a 50 MW cogeneration combined cycle power plant are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document