combined cycle plant
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 29)

H-INDEX

20
(FIVE YEARS 4)

Vestnik IGEU ◽  
2021 ◽  
pp. 5-13
Author(s):  
B.L. Shelygin ◽  
S.A. Pankov ◽  
G.V. Ledukhovsky

To improve the design of the elements of combined-cycle plants, and their structural and mode optimization, mathematical models are required. These models show energy efficiency indicators of the equipment under changing operating conditions. Modeling of recovery boilers is traditionally carried out with the application of specialized software systems that implement submodels of thermal-hydraulic calculations of the elements of the boiler water-steam and gas paths. This approach makes it difficult to solve practical tasks, since it requires licensed software and appropriate qualifications of an engineer. The current direction of solving this problem is statistical processing of the results of calculation data obtained with the application of specialized software systems, and development of a simplified mathematical model in the form of regression dependencies of boiler performance on variable parameters. In this study, the problem is solved in relation to the P-88 boiler of the combined-cycle plant-325 power unit in the load range near the nominal one. The initial mathematical model is developed with the application of the software package “TRAKT” designed for verification and engineering design of boilers. The simplified mathematical model is based on the methods of regression analysis of statistical data. The accuracy of the model is estimated based on the operational data of the combined-cycle plant -325 power unit. The authors have developed the mathematical model of the P-88 recovery boiler, which allows to determine the main performance indicators of the boiler when the electric power of the gas turbine and the outdoor air temperature are changing at the loads near the nominal value. The performance indicators are determined without application of specialized software for design calculation of the boiler. The accuracy of the initial mathematical model implemented in the software package “TRACT” is characterized by deviation of the calculation results data from the operational data in the corresponding modes of no more than 2 %. The additional uncertainty value introduced into the calculation results data does not exceed 1,5 % when we transfer from the initial mathematical model to the simplified one. The resulting mathematical description will allow solving the problems of mode optimization and evaluating the efficiency of the recovery boiler and the power unit under changing operating conditions.


Author(s):  
Ranga Nadig

Abstract Power plants operating in cyclic mode, standby mode or as back up to solar and wind generating assets are required to come on line on short notice. Simple cycle power plants employing gas turbines are being designed to come on line within 10–15 minutes. Combined cycle plants with heat recovery steam generators and steam turbines take longer to come on line. The components of a combined cycle plant, such as the HRSG, steam turbine, steam surface condenser, cooling tower, circulating water pumps and condensate pumps, are being designed to operate in unison and come on line expeditiously. Major components, such as the HRSG, steam turbine and associated steam piping, dictate how fast the combined cycle plant can come on line. The temperature ramp rates are the prime drivers that govern the startup time. Steam surface condenser and associated auxiliaries impact the startup time to a lesser extent. This paper discusses the design features that could be included in the steam surface condenser and associated auxiliaries to permit quick startup and reliable operation. Additional design features that could be implemented to withstand the demanding needs of cyclic operation are highlighted.


Author(s):  
Edzel Jair Casados-López ◽  
Raúl Cruz-Vicencio ◽  
Álvaro Casados-Sánchez ◽  
Álvaro Horst-Sánche

In this article, a combined cycle power station (gas-steam) is analyzed, considering air cooling before entering the compressor. Currently what is sought are higher thermal efficiencies, which is why the combined cycle power plants have been chosen, since they make better use of the fuel, producing greater net power, all of which have led to innovative modifications in the combined cycle power plants, improving the performance of this. In this research work, a 243 MW combined cycle plant is taken as the base, whose air temperature when entering the compressor is 32 ° C. Knowing in advance that one of the factors that affects the operation of this plant is the condition of the air when entering the compressor, which when it cools will increase its density and with it its mass flow, obtaining an increase in the power of the gas turbine. In view of this, this work proposes that through the use of a mechanical refrigeration system, air cooling to 15 °C is carried out at the compressor inlet and with this achieve an increase in plant performance.


Sign in / Sign up

Export Citation Format

Share Document