A Method for Determining the Optimal Direction of the Principal Moment of Inertia in Frame Element Cross-Sections

Author(s):  
Akihiro Takezawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper discusses a method to determine the optimal direction of the principal moment of inertia in frames element cross-sections for the design of mechanical structures at the conceptual design phase. The direction in each frame element is determined by maximizing the structural stiffness. Construction of the optimization procedure is based on the KKT-conditions and the balance of bending moments applied to each frame element. This method is implemented as an application in a structural topology optimization procedure that uses frame elements. Finally, several examples are presented to confirm that the proposed method is useful for the topology optimization method discussed here.

Author(s):  
Akihiro Takezawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper discuses a new topology optimization method using frame elements for the design of mechanical structures at the conceptual design phase. The optimal configurations are determined by maximizing multiple eigen-frequencies in order to obtain the most stable structures for dynamic problems. The optimization problem is formulated using frame elements having ellipsoidal cross-sections, as the simplest case. Construction of the optimization procedure is based on CONLIN and the complementary strain energy concept. Finally, several examples are presented to confirm that the proposed method is useful for the topology optimization method discussed here.


Author(s):  
Mads Baandrup ◽  
Ole Sigmund ◽  
Niels Aage

<p>This work applies a ultra large scale topology optimization method to study the optimal structure of bridge girders in cable supported bridges.</p><p>The current classic orthotropic box girder designs are limited in further development and optimiza­ tion, and suffer from substantial fatigue issues. A great disadvantage of the orthotropic girder is the loads being carried one direction at a time, thus creating stress hot spots and fatigue problems. Hence, a new design concept has the potential to solve many of the limitations in the current state­ of-the-art.</p><p>We present a design method based on ultra large scale topology optimization. The highly detailed structures and fine mesh-discretization permitted by ultra large scale topology optimization reveal new design features and previously unseen eff ects. The results demonstrate the potential of gener­ ating completely different design solutions for bridge girders in cable supported bridges, which dif­ fer significantly from the classic orthotropic box girders.</p><p>The overall goal of the presented work is to identify new and innovative, but at the same time con­ structible and economically reasonable, solutions tobe implemented into the design of future cable supported bridges.</p>


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Hong Zhou

The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.


Author(s):  
Kuang-Wu Chou ◽  
Chang-Wei Huang

This study proposes a new element-based method to solve structural topology optimization problems with non-uniform meshes. The objective function is to minimize the compliance of a structure, subject to a volume constraint. For a structure of a fixed volume, the method is intended to find a topology that could almost conform to the compliance minimum. The method is refined from the evolutionary switching method, whose policy of exchanging elements is improved by replacing some empirical decisions with ones according to optimization theories. The method has the evolutionary stage and the element exchange stage to conduct topology optimization. The evolutionary stage uses the evolutionary structural optimization method to remove inefficient elements until the volume constraint is satisfied. The element exchange stage performs a procedure refined from the element exchange method. Notably, the procedures of both stages are refined to conduct non-uniform finite element meshes. The proposed method was implemented to use the Abaqus Python scripting interface to call the services of Abaqus such as running analysis and retrieving the output database of an analysis. Numerical examples demonstrate that the proposed optimization method could determine the optimal topology of a structure that is subject to a volume constraint and whose mesh is non-uniform.


2020 ◽  
Vol 239 ◽  
pp. 106324 ◽  
Author(s):  
Lipeng Jiu ◽  
Weihong Zhang ◽  
Liang Meng ◽  
Ying Zhou ◽  
Liang Chen

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yue Wu ◽  
Qingpeng Li ◽  
Qingjie Hu ◽  
Andrew Borgart

Firefly Algorithm (FA, for short) is inspired by the social behavior of fireflies and their phenomenon of bioluminescent communication. Based on the fundamentals of FA, two improved strategies are proposed to conduct size and topology optimization for trusses with discrete design variables. Firstly, development of structural topology optimization method and the basic principle of standard FA are introduced in detail. Then, in order to apply the algorithm to optimization problems with discrete variables, the initial positions of fireflies and the position updating formula are discretized. By embedding the random-weight and enhancing the attractiveness, the performance of this algorithm is improved, and thus an Improved Firefly Algorithm (IFA, for short) is proposed. Furthermore, using size variables which are capable of including topology variables and size and topology optimization for trusses with discrete variables is formulated based on the Ground Structure Approach. The essential techniques of variable elastic modulus technology and geometric construction analysis are applied in the structural analysis process. Subsequently, an optimization method for the size and topological design of trusses based on the IFA is introduced. Finally, two numerical examples are shown to verify the feasibility and efficiency of the proposed method by comparing with different deterministic methods.


2011 ◽  
Vol 255-260 ◽  
pp. 2388-2393 ◽  
Author(s):  
Ji Zhuo Huang ◽  
Zhan Wang

Application of continuum structural topology optimization methods to the layout design of bracing systems for multistory steel frame buildings under earthquake loads is explored in this work. A weighted average strain energy sensitivity of element is formulated to be served as the element removal criterion in the optimization process, and then an ESO-based continuum structural topology optimization method for the layout design of multistory steel frame bracing systems subjected to earthquake-induced ground motions is presented. In each iterative design, an approximate reanalysis technique named CA method is adopted to reduce the computational effort. Finally, a design example is given to demonstrate the effectiveness of the presented optimization method for the optimal layout design of steel frame bracing systems under earthquake loads.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
In Gwun Jang ◽  
Il Yong Kim ◽  
Byung Man Kwak

In bone-remodeling studies, it is believed that the morphology of bone is affected by its internal mechanical loads. From the 1970s, high computing power enabled quantitative studies in the simulation of bone remodeling or bone adaptation. Among them, Huiskes et al. (1987, “Adaptive Bone Remodeling Theory Applied to Prosthetic Design Analysis,” J. Biomech. Eng., 20, pp. 1135–1150) proposed a strain energy density based approach to bone remodeling and used the apparent density for the characterization of internal bone morphology. The fundamental idea was that bone density would increase when strain (or strain energy density) is higher than a certain value and bone resorption would occur when the strain (or strain energy density) quantities are lower than the threshold. Several advanced algorithms were developed based on these studies in an attempt to more accurately simulate physiological bone-remodeling processes. As another approach, topology optimization originally devised in structural optimization has been also used in the computational simulation of the bone-remodeling process. The topology optimization method systematically and iteratively distributes material in a design domain, determining an optimal structure that minimizes an objective function. In this paper, we compared two seemingly different approaches in different fields—the strain energy density based bone-remodeling algorithm (biomechanical approach) and the compliance based structural topology optimization method (mechanical approach)—in terms of mathematical formulations, numerical difficulties, and behavior of their numerical solutions. Two numerical case studies were conducted to demonstrate their similarity and difference, and then the solution convergences were discussed quantitatively.


Sign in / Sign up

Export Citation Format

Share Document