energy concept
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 63)

H-INDEX

26
(FIVE YEARS 4)

Energy Atlas ◽  
2021 ◽  
pp. 170-188
Author(s):  
Manfred Hegger
Keyword(s):  

2021 ◽  
Vol 9 (4) ◽  
pp. 121-129
Author(s):  
Rebecca Grandrath ◽  
Matthias Teeuwen ◽  
Claudia Bohrmann-Linde

Author(s):  
Welly Yandi ◽  
Wahri Sunanda ◽  
Nada Fitsa Alfazumi

The Waste Power Plant is one of the power plants with a new renewable energy concept that utilizes waste as fuel. The processing of waste into electrical energy is carried out in two ways: the thermal conversion process and the biological conversion process to find the potential for waste that can be used as fuel to generate electricity. The analysis is needed, especially for Pangkalpinang, which currently has a lot of unprocessed waste. This research was conducted through calculations using several formulas that have been used in previous studies. From these results, the potential waste in 2015 is 97.25 tons/day and produces energy of 18548.10 MWh/year, and in 2020, it was about 186.57 tons/day and produced energy of 35547.18 MWh/year. The projection calculations are carried out to determine the potential for 2021 to 2030. Waste as much as 182523 tons/day in2021 can produce energy of as much as 34776.11 MWh/year. And in 2030, the amount of waste as much as 218132 tons/day can generate an energy potential of 41560.69 MWh/year.


2021 ◽  
Author(s):  
Elif AK ◽  
Kiymet Kaya ◽  
Yusuf Yaslan ◽  
Sema Fatma Oktug

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1915
Author(s):  
Heinz Bernhardt ◽  
Martin Höhendinger ◽  
Jörn Stumpenhausen

Regional energy supply is an important topic in the context of the energy transition in Germany. The “Cow Energy” project aims to combine the production of energy and milk for the farmer. In order to take the different needs into account, a central energy management system (EMS) is being established. This system records and simulates how much electricity is generated from renewable sources (biogas, solar, wind, etc.) on the farm. This is compared with the consumption of the barn technology (milking robot, feeding robot, etc.). This energy management is regulated according to the needs of the cows. In order to balance the fluctuations between energy production and energy consumption, the EMS regulates various battery systems. One goal is to network this energy system with the region and to establish regional energy networks.


Author(s):  
M. Brennenstuhl ◽  
M. von der Gruen ◽  
S. Harbola ◽  
A. Koukofikis ◽  
R. Padsala ◽  
...  

Abstract. In the face of climate change and the energy transition that the German federal government is aiming for, all renewable energy potentials need to be tapped. Unfortunately, small wind turbines play a niche role in Germany and most other countries despite the fact, that although they offer advantages as e.g. almost seasonal independent energy production in close proximity to the consumer on the same low-voltage grid level. One reason beside the lower wind speeds that can be expected closer to the ground is, that in comparison to PV (photovoltaic), for which good yield forecasts can be made using global radiation measurements from nearby weather stations or online databases, the yield of small wind turbines, especially in urban areas, can only be forecasted using on-site measurements due to the influence of the surrounding buildings and topography. This method is time-consuming and costly. To address this, within this work a Computational Fluid Dynamics (CFD) simulation based visualization framework for the investigation of the small wind turbine potential is presented. In this specific case the energy supply company EnBW is planning to refurbish the “Neuer Stöckach” urban quarter on the former “Stöckach” company site. As part of the redevelopment, a comprehensive energy concept is planned to integrate renewable energies. In this context the integration of small wind turbines into the energy concept is examined according to this new methodology.


2021 ◽  
Vol 15 (2) ◽  
pp. 33-40
Author(s):  
M. V. Sidorov ◽  
A. V. Lavrov ◽  
V. A. Voronin ◽  
A. V. Sidorova

A shortage of class 2 and class 3 tractors was observed in peasant farms. As a solution to this problem, it was proposed to develop a technological module that would increase the versatility of class 1.4 tractors by transferring them to a higher traction class. (Research purpose) The authors aimed to substantiate the nominal operating power of the engine for a tractor with a technological module. (Materials and methods) To calculate the required power, the authors proposed a method that takes into account the design features of the modular construction of a machine-tractor unit. (Results and discussion) The authors showed that for a modular power unit with a 6K6 wheel arrangement, it is necessary to consider a number of additional factors having an impact on the accuracy of the calculation: firstly, the tractor’s traction and coupling properties depend on the number of driving axles; secondly, the wheel slippage along individual axes is not the same and occurs due to a constructively conditioned kinematic discrepancy in their drive; thirdly, the three-axle transmission efficiency can be determined only as a total indicator of three transmission branches, that is, to drive the tractor front and rear wheels and, separately, to drive the wheels of the technological module. The authors compared the required engine power when using a tractor with ballast and that with a technological module.  (Conclusions) It was determined that in order to achieve the maximum traction force of adhesion on the hook when moving to the next higher traction class, it is necessary that the tractor, that the technological module is joint to, has the energy saturation of 2.00-2.41 kilowatts per kilonewton, which corresponds to traction and energy concept tractors whose engine power cannot be realized through traction. It was found that the power saturation of the tractor with the technological module will be equal to 1.59-1.65 kilowatts per kilonewton, which corresponds to the tractor of the traction concept and allows realizing the built-in engine power through traction.


2021 ◽  
Vol 1869 (1) ◽  
pp. 012068
Author(s):  
F N Kumala ◽  
A Ghufron ◽  
P P Astuti ◽  
M Crismonika ◽  
M N Hudha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document