Buckling Analysis of Circular FGM Plate Having Variable Thickness Under Uniform Compression by Finite Element Method

Author(s):  
Abazar Shamekhi ◽  
Mohammad H. Naei

This study presents the buckling analysis of radially-loaded circular plate with variable thickness made of functionally-graded material. The boundary conditions of the plate is either simply supported or clamped. The stability equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander’s non-linear strain-displacement relation for thin plates. The finite element method is used to determine the critical buckling load. The results obtained show good agreement with known analytical and numerical data. The effects of thickness variation and Poisson’s ratio are investigated by calculating the buckling load. These effects are found not to be the same for simply supported and clamped plates.


Author(s):  
M H Naei ◽  
A Masoumi ◽  
A Shamekhi

The current study presents the buckling analysis of radially-loaded circular plate with variable thickness made of functionally graded material. The boundary conditions of the plate is either simply supported or clamped. The stability equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander's non-linear strain-displacement relation for thin plates. The finite-element method is used to determine the critical buckling load. The results obtained show good agreement with known analytical and numerical data. The effects of thickness variation and Poisson's ratio are investigated by calculating the buckling load. These effects are found not to be the same for simply supported and clamped plates.



2005 ◽  
Vol 02 (03) ◽  
pp. 327-340 ◽  
Author(s):  
ABAZAR SHAMEKHI ◽  
MOHAMMAD H. NAI

This study presents the buckling analysis of radially-loaded circular plate with variable thickness made of functionally-graded material. The boundary conditions of the plate is either simply supported or clamped. The stability equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander's nonlinear strain-displacement relation for thin plates. Mesh free method is used to determine the critical buckling load. The results obtained show good agreement with known analytical and numerical data. The effects of thickness variation and Poisson's ratio are investigated by calculating the buckling load. These effects are found not to be the same for simply supported and clamped plates.



Author(s):  
M. Nikkhah-Bahrami ◽  
Abazar Shamekhi

This study presents the free vibration analysis of circular plate having variable thickness made of functionally-graded material. The boundary conditions of the plate is either simply supported or clamped. Dynamic equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander’s non-linear strain-displacement relation for thin plates. The finite element method is used to determine the natural frequencies. The results obtained show good agreement with known analytical data. The effects of thickness variation and Poisson’s ratio are investigated by calculating the natural frequencies. These effects are found not to be the same for simply supported and clamped plates.



2016 ◽  
Vol 16 (06) ◽  
pp. 1550015 ◽  
Author(s):  
M. Taghizadeh ◽  
H. R. Ovesy ◽  
S. A. M. Ghannadpour

In this study, a finite element method (FEM) based on the size dependent nonlocal integral elasticity theory is implemented for buckling analysis of nanoscaled beams with various boundary conditions. The method is based on the principle of total potential energy. The variations of buckling load with respect to the scaling effect parameter and to the length-to-thickness ratio are investigated. Furthermore, the effect of attenuation function type on the buckling load is examined. The results are compared with the corresponding solutions of governing stability equations which are derived in the context of nonlocal differential elasticity theory. It is found that the small scale coefficient has a noticeable effect on the buckling load of nanobeams.



Sign in / Sign up

Export Citation Format

Share Document