Evaluating the Use of Cyberinfrastructure in the Classroom to Enhance Product Dissection

Author(s):  
Matt Devendorf ◽  
Kemper Lewis ◽  
Timothy W. Simpson ◽  
Robert B. Stone ◽  
William C. Regli

Recent cyberinfrastructure initiatives seek to create ubiquitous, comprehensive, interactive, and functionally complete digital environments that consist of people, data, information, tools, and instruments for research communities. With product dissection as our unifying theme, we are forging a cyberinfrastructure to support undergraduate design engineering education through CIBER-U: Cyber-Infrastructure-Based Engineering Repositories for Undergraduates. CIBER-U pairs two of the nation’s leading design repository developers with several active users and their students to realize a high-impact application of cyberinfrastructure in engineering undergraduate curricula involving freshmen through seniors. Specifically, CIBER-U combines product dissection activities at three universities with two digital design repositories, CAD modeling and animation, video, MediaWiki technology, multimedia, and undergraduate summer research experiences to enable cyberinfrastructure-based product dissection activities. Nearly 700 students have participated in the Phase I efforts of CIBER-U, which have focused primarily on generating, capturing, and storing data in two digital design repositories. Lessons learned from these efforts are presented from the students’ perspectives as well as that of the faculty in both engineering and computer science. The implications for implementing CIBER-U on a national scale are discussed along with ongoing research.

Author(s):  
Matt Devendorf ◽  
Kemper Lewis ◽  
Timothy W. Simpson ◽  
Robert B. Stone ◽  
William C. Regli

Product dissection has been used successfully in a variety of ways to actively engage students in their learning; however, using product dissection in the classroom does have drawbacks: products, tools, and their upkeep can be costly, workspace and storage space can be difficult to obtain, and even the best crafted dissection assignments can end in chaos. Recent cyberinfrastructure initiatives seek to create ubiquitous, comprehensive, interactive, and functionally complete digital environments for research communities that consist of people, data, information, tools, and instruments. With product dissection as our unifying theme, we are applying cyberinfrastructure tools and technologies to undergraduate engineering education and assessing the impact of these tools on student learning. Specifically, the project combines product dissection activities at three universities with two digital design repositories CAD modeling and animation, video, and MediaWiki technology to enable cyberinfrastructure-based product dissection activities. Lessons learned from these efforts are presented from the students’ perspectives as well as that of the faculties in both engineering and computer science. The implications for implementing the developments on a national scale are discussed along with ongoing research.


2021 ◽  
Vol 83 (7) ◽  
pp. 451-457
Author(s):  
Tanner Smith ◽  
E. Dale Broder ◽  
Robin M. Tinghitella ◽  
Spencer J. Ingley

Course-based undergraduate research experiences (CUREs) are high-impact practices that allow students to conduct research during class time. Benefits of a CURE can be maximized when integrated into a faculty member’s ongoing research. However, this can be particularly challenging for field biologists, especially when field sites are not situated near their university. Indeed, few existing CUREs are field based. One solution is to partner with a collaborator near the field site. We describe a semester-long CURE in an animal behavior class that involved collaboration among three institutions: researchers from two “distant” institutions have ongoing research at the “local” institution where the CURE took place. This model uses remote conferencing and strategic collaboration to meet all stakeholders’ needs. Undergraduate students engaged as active participants in collaborative inquiry-based work, learned in a cooperative context, and even participated in the publication process. The local principal investigator and their institution generated a high-impact course that integrated research and teaching. Likewise, the distant principal investigators were able to collect more extensive and longer-term field-based data than otherwise possible, and they gained valuable input from the local researchers that contributed to future projects. Remote collaborations open the door to international collaboration with smaller institutions, promoting greater inclusion in science.


2017 ◽  
Author(s):  
Laura A. Lukes ◽  
◽  
J. Nelson ◽  
K.C. Kerby-Patel ◽  
W.C. Liles ◽  
...  

2021 ◽  
pp. 1-17
Author(s):  
Keliann LaConte ◽  
Brooks Mitchell ◽  
Christine Shupla ◽  
Carrie Liston ◽  
Ginger Fitzhugh

MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1667-1672 ◽  
Author(s):  
Lon A. Porter

ABSTRACTTraditional lecture-centered approaches alone are inadequate for preparing students for the challenges of creative problem solving in the STEM disciplines. As an alternative, learnercentered and other high-impact pedagogies are gaining prominence. The Wabash College 3D Printing and Fabrication Center (3D-PFC) supports several initiatives on campus, but one of the most successful is a computer-aided design (CAD) and fabrication-based undergraduate research internship program. The first cohort of four students participated in an eight-week program during the summer of 2015. A second group of the four students was successfully recruited to participate the following summer. This intensive materials science research experience challenged students to employ digital design and fabrication in the design, testing, and construction of inexpensive scientific instrumentation for use in introductory STEM courses at Wabash College. The student research interns ultimately produced a variety of successful new designs that could be produced for less than $25 per device and successfully detect analytes of interest down to concentrations in the parts per million (ppm) range. These student-produced instruments have enabled innovations in the way introductory instrumental analysis is taught on campus. Beyond summer work, the 3D-PFC staffed student interns during the academic year, where they collaborated on various cross-disciplinary projects with students and faculty from departments such as mathematics, physics, biology, rhetoric, history, classics, and English. Thus far, the student work has led to three campus presentations, four presentations at national professional conferences, and three peer-reviewed publications. The following report highlights initial progress as well as preliminary assessment findings.


Author(s):  
Dileep V. Khadilkar ◽  
John A. Gershenson ◽  
Larry A. Stauffer

Abstract We developed a new database tool to manage information during the product definition process. This tool is a result of an ongoing research program to coordinate marketing and design engineering efforts in new product developments, and consider the related life cycle issues early in the design process. The database tool facilitates a methodology that integrates customer and design information, and allows reuse of this information during redesign problems. This paper presents the development, implementation, and an example use of the database tool.


Author(s):  
Jessie L. Moore ◽  
Angela Myers ◽  
Hayden McConnell

Abstract This article illustrates the Ten Salient Practices of Undergraduate Research Mentors with examples for English studies. The authors include both one-to-one and research-team examples, recognizing that although much English scholarship is solitary, peers and near peers play key roles in high-quality, mentored undergraduate research experiences.


Author(s):  
Yupo Chan

This paper reviews both the author’s experience with managing highway network traffic on a real-time basis and the ongoing research into harnessing the potential of telecommunications and information technology (IT). On the basis of the lessons learned, this paper speculates about how telecommunications and IT capabilities can respond to current and future developments in traffic management. Issues arising from disruptive telecommunications technologies include the ready availability of real-time information, the crowdsourcing of information, the challenges of big data, and the need for information quality. Issues arising from transportation technologies include autonomous vehicles and connected vehicles and new taxi-like car- and bikesharing. Illustrations are drawn from the following core functions of a traffic management center: ( a) detecting and resolving an incident (possibly through crowdsourcing), ( b) monitoring and forecasting traffic (possibly through connected vehicles serving as sensors), ( c) advising motorists about routing alternatives (possibly through real-time information), and ( d) configuring traffic control strategies and tactics (possibly though big data). The conclusion drawn is that agility is the key to success in an ever-evolving technological scene. The solid guiding principle remains innovative and rigorous analytical procedures that build on the state of the art in the field, including both hard and soft technologies. The biggest modeling and simulation challenge remains the unknown, including such rapidly emerging trends as the Internet of things and the smart city.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-32
Author(s):  
Abbey L. Dvorak ◽  
Eugenia Hernandez-Ruiz ◽  
Halle Nick ◽  
Ruowen Qi ◽  
Celeste Alderete ◽  
...  

Course-based undergraduate research experiences (CURE) allow students opportunities to develop research skills. In a scaffolded CURE, music therapy and music education students composed, evaluated, and selected the music stimuli used in a music and mindfulness study with non-musicians at Site 1 and musicians at Site 2. The purposes of this paper are to (a) describe the process of student music stimuli composition and evaluation for use in a course-based undergraduate research experience and (b) identify benefits, challenges, and lessons learned from the viewpoints of students, graduate assistants, and faculty who participated in the multi-site study. Eight students, two graduate assistants, and two faculty provide an overview of the CURE teaching model and assignments, and share first-person accounts of their experiences participating in this CURE.  


Sign in / Sign up

Export Citation Format

Share Document