Generative Design and CNC Fabrication Using Shape Grammars

Author(s):  
Christoph Ertelt ◽  
Kristina Shea

Generative design and fabrication refers to the ability to autonomously generate designs while simultaneously generating all information to directly fabricate them. This technique is driven by the increasing need to rapidly and flexibly fabricate customized parts and individually designed products. For the automation of the design-to-fabrication process chain, intensive and dynamically updated knowledge from the domains of design and fabrication must be provided. To allow for a flexible, autonomous fabrication, the knowledge modeled must dynamically reflect the state of the fabrication system and its capabilities. This paper presents an approach to unify knowledge for generative design and generative fabrication using shape grammars. With shape grammars, the geometry of designs and their mapping to removal volumes corresponding to fabrication processes on CNC machine tools are represented. The process instructions for fabrication are included by augmenting the removal volume shapes with labels. A new shape grammar approach to represent designs and fabrication processes is presented and validated on an example functional part as a proof-of-concept. The approach enables pushing knowledge downstream, from design and process planning directly to the fabrication system itself providing a stepping stone towards awareness of machine capabilities in fabrication systems and autonomous process planning for customized parts.

2021 ◽  
Author(s):  
Dongfang Mu ◽  
Xiaoping Hu ◽  
Haofeng Yu ◽  
Baohua Yu

Abstract Compared with traditional milling, ultrasonic-assisted cutting of honeycomb cores has the advantages of good surface quality and low cutting force. Because the ultrasonic cutter and chip shapes used in ultrasonic machining are significantly different from traditional machining methods. This study is based on UG CAM for process planning, which will be converted into codes that can be recognized by six-axis CNC machine tools through post-processing, and verify the feasibility through VERICUT simulation.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


CIRP Annals ◽  
1995 ◽  
Vol 44 (1) ◽  
pp. 383-387 ◽  
Author(s):  
J. Agapiou ◽  
E. Rivin ◽  
C. Xie

Sign in / Sign up

Export Citation Format

Share Document