scholarly journals Study of Machining of Gears with Regular and Modified Outline Using CNC Machine Tools

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4506 ◽  
Author(s):  
Hyungjung Kim ◽  
Woo-Kyun Jung ◽  
In-Gyu Choi ◽  
Sung-Hoon Ahn

In the new era of manufacturing with the Fourth Industrial Revolution, the smart factory is getting much attention as a solution for the factory of the future. Despite challenges in small and medium-sized enterprises (SMEs), such as short-term strategies and labor-intensive with limited resources, they have to improve productivity and stay competitive by adopting smart factory technologies. This study presents a novel monitoring approach for SMEs, KEM (keep an eye on your machine), and using a low-cost vision, such as a webcam and open-source technologies. Mainly, this idea focuses on collecting and processing operational data using cheaper and easy-to-use components. A prototype was tested with the typical 3-axis computer numerical control (CNC) milling machine. From the evaluation, availability of using a low-cost webcam and open-source technologies for monitoring of machine tools was confirmed. The results revealed that the proposed system is easy to integrate and can be conveniently applied to legacy machine tools on the shop floor without a significant change of equipment and cost barrier, which is less than $500 USD. These benefits could lead to a change of monitoring operations to reduce time in operation, energy consumption, and environmental impact for the sustainable production of SMEs.


2016 ◽  
Vol 693 ◽  
pp. 1780-1785
Author(s):  
Zhen Sang ◽  
Tai Yong Wang ◽  
Xiang Xiang Zou ◽  
He Nan Xu

Collision detection is the core of the numerical control system of intelligent manufacturing in the manufacturing process of rapid feeding, positioning and cutting. We need to avoid collision between the cutting tools, machine tools and workpiece. Based on the characteristic of five-axis CNC system, we analyze the advantages and disadvantages of Hierarchical Mesh Segmentation and Octree. At last, we use the collision detection algorithm of cuboid and separation axis to optimize the algorithm of traditional NC machine tool collision detection, which improve the detection efficiency and accuracy.


2012 ◽  
Vol 271-272 ◽  
pp. 1770-1775
Author(s):  
Qi Gao

The method used for measurement and calibration of machine tool errors should be general and efficient. With this method, the machine tool status can be completely identified and its accuracy can be enhanced by software error compensation. The point compensation method can be used as a means for modifying the nominal tool path and on-machine inspection where the machine tool is used as a coordinate measuring machine. The validity of the error calibration method proposed in this' paper was shown using a vertical 3-axis CNC machine with a laser interferometer and a ball bar technique.


Machines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 180
Author(s):  
Cheng-Hsien Kuo ◽  
Po-Cheng Chen

For machining parts with complex shapes, consisting of computer numerical control (CNC) machine tools, different CNC machine tools will be used according to the machining method. If the workpiece is removed for off-machine measurement after machining, when the size is incorrect, it will need to be returned to the CNC machine tool for secondary machining. In this case, the workpiece surface quality and machining accuracy will be affected, which is very time-consuming. On-machine measurement and complex machine center is a key to solve this problem. In the recent researches that the touch probe was integrated on three or five axis machine for error compensation and shape construction based on on-machine measurement, but turning-milling machine was rare. In addition, the most types of parts were thin-walled parts or thin web parts. In this study, a contact measurement system is integrated into a CNC combined turning-milling machine for on-machine measuring. Macro-programming is used to design the machining path of A6061-T6 aluminum alloy hexagonal punch, and the action of probe measurement is added to the machining path. As the measured data exceed the tolerance range, the calculated data are fed back to the controller for machining improvement by compensation. The finished hexagonal punch is measured in a 3D coordinate measuring machine and the error is compared. The experimental results show that the contact probe needs to be corrected before machining, and the size of the corrected workpiece can reach the tolerance range of ±0.01 mm. The size error of rough machining is larger than that of fined machining, and the size error of rough machining will increase with the length of the workpiece.


2019 ◽  
Vol 9 (16) ◽  
pp. 3357 ◽  
Author(s):  
Xuan Wei ◽  
Zhikun Su ◽  
Xiaohuan Yang ◽  
Zekui Lv ◽  
Zhiming Yang ◽  
...  

In order to improve the accuracy of the linear motion of computer numerical control (CNC) machine tools, a novel method based on a new type of 1-D (1-dimensional) artifact is proposed to measure the geometric errors. Based on the properties of the displacement measurement of a revolutionary paraboloid and the angle measurement of plane mirrors, the 1-D artifact can be applied to identify position errors and angle errors. Meanwhile, the concrete 6 degrees-of-freedom error identification method is described in this paper in sufficient detail. Through measuring the 1-D artifact horizontally and vertically using the machine tool, the geometric errors can be obtained by calculating the deviation between the characteristic parameter of the 1-D artifact measured by the machine tool and that measured by a more precise method, for example, laser interferometry. Experiments were carried out on a coordinate measuring machine, and the validity and accuracy of the method were discussed by comparing the result with the identification error measured by a laser interferometer.


Author(s):  
Qin Hu ◽  
Youping Chen ◽  
Jixiang Yang ◽  
Dailin Zhang

Linear motion commands of multi-axis computer numerical control (CNC) machine tools need to be smoothed at the transition corners, because the velocity discontinuities at corners can result in fluctuations on machine tool motions and lead to poor surface quality. However, no research has been reported on local corner smoothing algorithm for four-axis CNC machine tools with two rotary axes by considering their special kinematic characteristics. To this end, this paper proposes an analytical C3 continuous local corner smoothing algorithm for four-axis CNC machines with two rotary axes. After coordinates transformation, the tool tip positions and tool orientations are smoothed by locally inserting specially designed three-dimensional (3D) quintic B-splines and one-dimensional (1D) quintic B-splines into the corners between linear motion segments, respectively. The smoothing algorithm guarantees C3 continuity of the tool tip position and C3 continuous synchronization of the tool orientation related to the tool tip position, through analytically evaluating control points of the inserted microsplines. The maximum error tolerances of the tool tip position and tool orientation are mathematically constrained. Experiments on an in-house developed four-axis machine verify the efficacy of the proposed algorithm, where maximal errors caused by the local corner smoothing algorithm are constrained, the synchronization of the tool orientation and the tool tip position are achieved, and the proposed C3 continuous corner smoothing algorithm has lower jerk and jounce but higher tracking and contour accuracy than C2 continuous algorithm.


2019 ◽  
Vol 9 (13) ◽  
pp. 2701 ◽  
Author(s):  
Li ◽  
Yang ◽  
Gao ◽  
Su ◽  
Wei ◽  
...  

Error compensation technology offers a significant means for improving the geometric accuracy of CNC machine tools (MTs) as well as extending their service life. Measurement and identification are important prerequisites for error compensation. In this study, a measurement system, mainly composed of a self-developed micro-angle sensor and an L-shape standard piece, is proposed. Meanwhile, a stepwise identification method, based on an integrated error model, is established. In one measurement, four degrees-of-freedom errors, including two-dimensional displacement and two-dimensional angle of a linear guideway, can be obtained. Furthermore, in accordance with the stepwise identification method, the L-shape standard piece is placed in three different planes, so that the measurement and identification of all 21 geometric errors can be implemented. An experiment is carried out on a coordinate measuring machine (CMM) to verify the system. The residual error of the angle error, translation error and squareness error are 1.5″, 2 μm and 3.37″, respectively, and these are compared to the values detected by a Renishaw laser interferometer.


2015 ◽  
Vol 809-810 ◽  
pp. 1504-1509 ◽  
Author(s):  
Ana Lacramioara Ungureanu ◽  
Gheorghe Stan ◽  
Paul Alin Butunoi

In this paper are proposed two new approaches to maintenance strategies for Computer Numerical Control (CNC) machine tools. The analysis is done for different families of CNC machine tools from S.C. Elmet Bacau, a company specialized in aviation. In maintenance actions applied to CNC machine tools is very important to know the evolution of defects and critical state of electrical and mechanical components. The results of this analysis concludes that maintenance actions can be judged by the developing time period diagram, between failure appearance and interruptions in operation. It is also analyzed the financial impact, revealed from known maintenance strategies adopted on CNC machine tools, resulting in a positive approach of condition based maintenance.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2458
Author(s):  
Zizhou Sun ◽  
Yifan Dai ◽  
Hao Hu ◽  
Guipeng Tie ◽  
Chaoliang Guan ◽  
...  

The application of ultra-precision shaft parts is widely used, such as the spindle core of the air bearing spindle in ultra-precision machine tools. The precision of the spindle core is extremely high, and it is very difficult to obtain directly by traditional Computer Numerical Control (CNC) machine tools but is mostly obtained by manual grinding, whose machining efficiency is greatly limited. Based on the deterministic figuring theory, this paper focuses on the ultra-precision roundness, optimizing the filtering parameters of the measurement error data and studying the generation mechanism of the removal function morphology; the shape of the removal function is adjusted by combining the analysis of the figuring ability and positioning error. Finally, the optimized removal function is used on an experimental steel shaft, the average roundness convergence ratio is 72% higher than that of the original removal function, and the roundness reaches a 0.1 μm level. The result shows that a reasonable filtering of measured data and the removal function adjusted for the surface feature can improve the efficiency and precision of deterministic figuring on shaft parts.


Sign in / Sign up

Export Citation Format

Share Document