Design for Lifecycle Cost Using Time-Dependent Reliability

Author(s):  
Amandeep Singh ◽  
Zissimos P. Mourelatos ◽  
Jing Li

Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. As time progresses, the product may fail due to time phenomena such as time-dependent operating conditions, component degradation, etc. The degradation of reliability with time may increase the lifecycle cost due to potential warranty costs, repairs and loss of market share. In design for lifecycle cost, we must account for product quality, and time-dependent reliability. Quality is a measure of our confidence that the product conforms to specifications as it leaves the factory. Reliability depends on 1) the probability that the system will perform its intended function successfully for a specified interval of time (no hard failure), and 2) on the probability that the system response will not exceed an objectionable by the customer or operator, threshold for a certain time period (no soft failure). Quality is time-independent, and reliability is time-dependent. This article presents a design methodology to determine the optimal design of time-dependent, multi-response systems, by minimizing the cost during the life of the product. The conformance of multiple responses is treated in a series-system fashion. The lifecycle cost includes a production, an inspection, and an expected variable cost. All costs depend on quality and/or reliability. The key to our approach is the calculation of the so-called system cumulative distribution function (time-dependent probability of failure). For that we use an equivalent time-invariant “composite” limit state which is accurate for monotonic or non-monotonic in time, systems. Examples highlight the calculation of the cumulative distribution function and the design methodology for lifecycle cost.

2010 ◽  
Vol 118-120 ◽  
pp. 10-16 ◽  
Author(s):  
Amandeep Singh ◽  
Zissimos P. Mourelatos ◽  
Jing Li

Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. As time progresses, the product may fail due to time phenomena such as time-dependent operating conditions, component degradation, etc. The degradation of reliability with time may increase the lifecycle cost due to potential warranty costs, repairs and loss of market share. In design for lifecycle cost and preventive maintenance, we must account for product quality, and time-dependent reliability. Quality is a measure of our confidence that the product conforms to specifications as it leaves the factory. Reliability depends on 1) the probability that the system will perform its intended function successfully for a specified interval of time, and 2) on the probability that the system response will not exceed an objectionable by the customer or operator, threshold for a certain time period. Quality is time-independent, and reliability is time-dependent. This paper presents a methodology to determine the optimal design and preventive maintenance of time-dependent, multi-response systems, by minimizing the cost during the life of the product. The lifecycle cost includes a production, an inspection, and an expected variable cost. All costs depend on quality and/or reliability. A roller clutch example highlights the design methodology for lifecycle cost.


2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Amandeep Singh ◽  
Zissimos P. Mourelatos ◽  
Jing Li

Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. As time progresses, the product may fail due to time phenomena such as time-dependent operating conditions, component degradation, etc. The degradation of reliability with time may increase the lifecycle cost due to potential warranty costs, repairs, and loss of market share, affecting the sustainability of environmentally friendly products. In the design for lifecycle cost, we must account for product quality and time-dependent reliability. Quality is a measure of our confidence that the product conforms to specifications as it leaves the factory. Quality is time independent, and reliability is time dependent. This article presents a design methodology to determine the optimal design of time-dependent multiresponse systems by minimizing the cost during the life of the product. The conformance of multiple responses is treated in a series-system fashion. The lifecycle cost includes a production, an inspection, and an expected variable cost. All costs depend on quality and/or reliability. The key to our approach is the calculation of the so-called system cumulative probability of failure. For that, we use an equivalent time-invariant “composite” limit state and a niching genetic algorithm with lazy learning metamodeling. A two-mass vibratory system example and an automotive roller clutch example demonstrate the calculation of the cumulative probability of failure and the design for lifecycle cost.


Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


2017 ◽  
Vol 20 (5) ◽  
pp. 939-951
Author(s):  
Amal Almarwani ◽  
Bashair Aljohani ◽  
Rasha Almutairi ◽  
Nada Albalawi ◽  
Alya O. Al Mutairi

Sign in / Sign up

Export Citation Format

Share Document