A Three-Dimensional Evacuation Simulation Using Digital Human Models With Precise Kinematic Joints

Author(s):  
Takao Kakizaki ◽  
Jiro Urii ◽  
Mitsuru Endo

Disaster drills are important for minimizing the damage caused by earthquakes, floods, and fires. Therefore, mass-evacuation drills are considered to be an important obligation of schools and workplaces that employ several individuals. Moreover, for the validation of drill effectiveness as well as disaster prevention, the significance of mass-evacuation simulation has increased. In the present paper, a three-dimensional mass-evacuation simulation is first explained. The developed multi-agent-based simulation with a detailed three-dimensional building infrastructure uses a kinematic digital human model with precise human joints. Simulation of a mass-evacuation drill by high-school students agrees well with the results of actual drills. In addition, considering the transportation of badly injured persons during disasters, digital human motion sets of patients and transporters have been developed for critical evacuation simulation. Several examples have revealed the possibility of applying the extended simulation to evacuation from houses and hospitals.

Author(s):  
Takao Kakizaki ◽  
Jiro Urii ◽  
Mitsuru Endo

Disaster drills are important for minimizing the damage caused by earthquakes, floods, and fires. Therefore, mass-evacuation drills are considered to be an important obligation of schools and workplaces that employ several individuals. Moreover, for the validation of drill effectiveness as well as disaster prevention, the significance of mass-evacuation simulation has increased.In the present paper, a three-dimensional mass-evacuation simulation is first explained. The developed multi-agent-based simulation with a detailed three-dimensional building infrastructure uses a kinematic digital human (KDH) model with precise human joints. Simulation of a mass-evacuation drill by high-school students agrees well with the results of actual drills. In addition, considering the transportation of badly injured persons during disasters, digital human motion sets of patients, and transporters have been developed for critical evacuation simulation. Several examples have revealed the possibility of applying the extended simulation to evacuation from houses and hospitals.


Author(s):  
Takao Kakizaki ◽  
Mitsuru Endo ◽  
Jiro Urii

The 3D mass evacuation simulation of an airplane accident is experimentally verified. Evacuee motion has been experimentally investigated by building a test field that emulates the interior of an actual regional airliner with a capacity of approximately 100 passengers. The experiment results indicate that the evacuation time tends to be affected by the number of passengers and the evacuee guidance at the emergency exit. The results also indicate that any evacuation delay in exiting by individual passengers only slightly affects the total evacuation time because of evacuee congestion in the aisles. Moreover, the importance of evacuation guidance notification was investigated based on the evacuation-order variance. Finally, the experimental results were compared to the corresponding simulation results. Simulations using appropriate evacuee walking speeds can provide valid evacuation times, which are the most important factor in designing evacuation drills. Consequently, these results should be applied to existing 3D simulations using precise kinematic digital human (KDH) models for more accurate mass evacuation/rescue simulations.


Author(s):  
Takao Kakizaki ◽  
Jiro Urii ◽  
Mitsuru Endo

The 3D mass evacuation simulation of an airplane accident is experimentally verified. Evacuee motion has been experimentally investigated by building a test field that emulates the interior of an actual regional airliner with a capacity of approximately 100 passengers. The experiment results indicate that the evacuation time tends to be affected by the number of passengers and the evacuee guidance at the emergency exit. The results also indicate that any evacuation delay in exiting by individual passengers only slightly affects the total evacuation time because of evacuee congestion in the aisles. Moreover, the importance of evacuation guidance notification was investigated based on the evacuation-order variance. Finally, the experimental results were compared to the corresponding simulation results. Simulations using appropriate evacuee walking speeds can provide valid evacuation times, which are the most important factor in designing evacuation drills. Consequently, these results should be applied to existing 3D simulations using precise KDH models for more accurate mass evacuation/rescue simulations.


Author(s):  
Takao Kakizaki ◽  
Mai Endo ◽  
Jiro Urii ◽  
Mitsuru Endo

The importance of physiotherapy is becoming more significant with the increasing number of countries with aging populations. Thus, the education of physiotherapists is a crucial concern in many countries. Information and communications technologies, such as motion capture systems, have been introduced to sophisticate the training methods used in physiotherapy. However, the methods employed in most training schools for physiotherapists and occupational therapists remain dependent on more conventional materials. These materials include conventional textbooks with samples of traditional gait motion photographs and video archives of patients' walking motion. Actual on-site clinical training is also utilized in current physiotherapy education programs. The present paper addresses an application of a previously developed digital human model called the kinematic digital human (KDH) to physiotherapy education with a focus on improving students' understanding of the gait motion of disabled patients. KDH models for use in physiotherapy were constructed based on Rancho Los Amigos National Rehabilitation Center (RLANRC) terminology, which is considered the preferred standard among clinicians. The developed KDH models were employed to allow the three-dimensional visualization of the gait motion of a hemiplegic patient.


Author(s):  
Takao Kakizaki ◽  
Jiro Urii ◽  
Mitsuru Endo

The importance of physiotherapy is becoming more significant with the increasing number of countries with aging populations. Thus, the education of physiotherapists is a crucial concern in many countries. Information and communications technologies, such as motion capture systems, have been introduced to sophisticate the training methods used in physiotherapy. However, the methods employed in most training schools for physiotherapists and occupational therapists remain dependent on more conventional materials. These materials include conventional textbooks with samples of traditional gait motion photographs and video archives of patients’ walking motion. Actual on-site clinical training is also utilized in current physiotherapy education programs. The present paper addresses an application of previously developed digital human model called kinematic digital human (KDH) to physiotherapy education with a focus on improving students’ understanding of the gait motion of disabled patients. KDH models for use in physiotherapy were constructed based on Rancho Los Amigos National Rehabilitation Center terminology, which is considered the preferred standard among clinicians. The developed KDH models were employed to allow the three-dimensional visualization of the gait motion of a hemiplegic patient.


Author(s):  
Takao Kakizaki ◽  
Jiro Urii ◽  
Mitsuru Endo

A three-dimensional (3D) mass evacuation simulation using precise kinematic digital human (KDH) models and an experimental study are discussed. The flooding associated with the large tsunami caused by the Great East Japan Earthquake on Mar. 11, 2011, was responsible for more than 90% of the disaster casualties. Unfortunately, it is expected that other huge tsunamis could occur in Japan coastal areas if an earthquake with magnitude greater than eight occurs along the Nankai Trough. Therefore, recent disaster prevention plans should include evacuation to higher buildings, elevated ground, and constructed tsunami evacuation towers. In this study, evacuation simulations with 500 KDHs were conducted. The simulations consisted of several subgroups of KDHs. It is shown that the possible evacuation path of each group should be carefully determined to minimize the evacuation time. Several properties such as evacuee motion characteristics of KDHs, number of evacuees, exit gates, and number of injured persons were carefully considered in the simulations. Evacuee motion was also experimentally investigated by using a multistoried building to replicate the structure of an actual tsunami evacuation tower that could accommodate approximately 120 evacuees. The experimental results suggest that an appropriately divided group population could effectively reduce the overall group evacuation time. The results also suggest that fatigue due to walking during evacuation adversely affects the total evacuation time, especially in the ascent of stairways. The experimental data can be used to obtain more accurate simulations of mass evacuation.


Author(s):  
Nicola A. Kiernan ◽  
Andrew Manches ◽  
Michael K. Seery

Visuospatial thinking is considered crucial for understanding of three-dimensional spatial concepts in STEM disciplines. Despite their importance, little is known about the underlying cognitive processing required to spatially reason and the varied strategies students may employ to solve visuospatial problems. This study seeks to identify and describe how and when students use imagistic or analytical reasoning when making pen-on-paper predictions about molecular geometry and if particular reasoning strategies are linked to greater accuracy of responses. Student reasoning was evidenced through pen-on-paper responses generated by high attaining, high school students (N = 10) studying Valence Shell Electron Pair Repulsion (VSEPR) Theory in their final year of chemistry. Through analysis and coding of students’ open-ended paper-based responses to an introductory task, results revealed that students employed multiple reasoning strategies, including analytical heuristics and the spontaneous construction of external diagrammatic representations to predict molecular geometry. Importantly, it was observed that despite being instructed on the use of VSEPR theory to find analytical solutions, some students exhibited preference for alternative reasoning strategies drawing on prior knowledge and imagistic reasoning; showing greater accuracy with 3D diagrammatic representations than students who used the algorithmic method of instruction. This has implications for both research and practice as use of specific reasoning strategies are not readily promoted as a pedagogical approach nor are they given credit for in national examinations at school level.


Author(s):  
Takao Kakizaki ◽  
Jiro Urii ◽  
Mitsuru Endo

A 3D mass evacuation simulation using precise kinematic digital human (KDH) models and an experimental study are discussed. The tidal wave associated with the large tsunami caused by the Great East Japan Earthquake was responsible for more than 90% of the disaster casualties. Unfortunately, it is expected that other huge tsunamis could occur in Japan coastal areas if an earthquake with magnitude greater than 8 occurred along the Nankai Trough. Therefore, recent disaster prevention plans should include evacuation to higher buildings, elevated ground, and construction of tsunami evacuation towers. In the evacuation simulation with 500 KDHs, the mass consists of several subgroups. It is shown that the possible evacuation path of each group should be carefully determined to minimize the evacuation time. Several properties such as evacuee motion characteristics of KDHs, number of evacuees, exit gates and, number of injured persons were carefully considered in the simulation. Evacuee motion was also experimentally investigated by building a test field that simulates the structure of an actual tsunami evacuation tower for accommodating approximately 120 evacuees. The experimental results suggest that an appropriately divided group population may effectively reduce the overall group evacuation time. The results also suggest that the fatigue due to walking during evacuation adversely affect the total evacuation time, especially the ascent of stairways. The experimental data can be used to obtain more accurate simulations of mass evacuation.


Author(s):  
Yujiang Xiang ◽  
Jasbir S. Arora ◽  
Salam Rahmatalla ◽  
Hyun-Joon Chung ◽  
Rajan Bhatt ◽  
...  

Human carrying is simulated in this work by using a skeletal digital human model with 55 degrees of freedom (DOFs). Predictive dynamics approach is used to predict the carrying motion with symmetric and asymmetric loads. In this process, the model predicts joints dynamics using optimization schemes and task-based physical constraints. The results indicated that the model can realistically match human motion and ground reaction forces data during symmetric and asymmetric load carrying task. With such prediction capability the model could be used for biomedical and ergonomic studies.


2013 ◽  
Vol 11 ◽  
pp. 347-352
Author(s):  
M. Vuchkovikj ◽  
I. Munteanu ◽  
T. Weiland

Abstract. In the last two decades, the increasing number of electronic devices used in day-to-day life led to a growing interest in the study of the electromagnetic field interaction with biological tissues. The design of medical devices and wireless communication devices such as mobile phones benefits a lot from the bio-electromagnetic simulations in which digital human models are used. The digital human models currently available have an upright position which limits the research activities in realistic scenarios, where postured human bodies must be considered. For this reason, a software application called "BodyFlex for CST STUDIO SUITE" was developed. In its current version, this application can deform the voxel-based human model named HUGO (Dipp GmbH, 2010) to allow the generation of common postures that people use in normal life, ensuring the continuity of tissues and conserving the mass to an acceptable level. This paper describes the enhancement of the "BodyFlex" application, which is related to the movements of the forearm and the wrist of a digital human model. One of the electromagnetic applications in which the forearm and the wrist movement of a voxel based human model has a significant meaning is the measurement of the specific absorption rate (SAR) when a model is exposed to a radio frequency electromagnetic field produced by a mobile phone. Current SAR measurements of the exposure from mobile phones are performed with the SAM (Specific Anthropomorphic Mannequin) phantom which is filled with a dispersive but homogeneous material. We are interested what happens with the SAR values if a realistic inhomogeneous human model is used. To this aim, two human models, a homogeneous and an inhomogeneous one, in two simulation scenarios are used, in order to examine and observe the differences in the results for the SAR values.


Sign in / Sign up

Export Citation Format

Share Document