Modeling and Control of Active Vibration Isolation System Taking the Dynamics of Elastic Load Into Account by Using the Reduced Order Physical Model

Author(s):  
Keisuke Sudo ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper deals with the control system design for active isolation table[1][2][3]. It aims at controlling vibration of the installed object and isolation table. An experimental isolation table with flexible loaded object is built. Control simulations are carried out by using feedback controller designed according to LQ optimal control theory.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3608 ◽  
Author(s):  
Qianqian Wu ◽  
Ning Cui ◽  
Sifang Zhao ◽  
Hongbo Zhang ◽  
Bilong Liu

The environment in space provides favorable conditions for space missions. However, low frequency vibration poses a great challenge to high sensitivity equipment, resulting in performance degradation of sensitive systems. Due to the ever-increasing requirements to protect sensitive payloads, there is a pressing need for micro-vibration suppression. This paper deals with the modeling and control of a maglev vibration isolation system. A high-precision nonlinear dynamic model with six degrees of freedom was derived, which contains the mathematical model of Lorentz actuators and umbilical cables. Regarding the system performance, a double closed-loop control strategy was proposed, and a sliding mode control algorithm was adopted to improve the vibration isolation performance. A simulation program of the system was developed in a MATLAB environment. A vibration isolation performance in the frequency range of 0.01–100 Hz and a tracking performance below 0.01 Hz were obtained. In order to verify the nonlinear dynamic model and the isolation performance, a principle prototype of the maglev isolation system equipped with accelerometers and position sensors was developed for the experiments. By comparing the simulation results and the experiment results, the nonlinear dynamic model of the maglev vibration isolation system was verified and the control strategy of the system was proved to be highly effective.


2016 ◽  
Vol 21 (4) ◽  
pp. 2185-2196 ◽  
Author(s):  
Myeong Hyeon Kim ◽  
Hyo Young Kim ◽  
Hyun Chang Kim ◽  
Dahoon Ahn ◽  
Dae-Gab Gweon

Sign in / Sign up

Export Citation Format

Share Document