A New Approach to Generic Design Feature Recognition by Detecting the Hint of Topology Variation

Author(s):  
Sha Wan ◽  
Yunbao Huang ◽  
Qifu Wang ◽  
Liping Chen ◽  
Yuhang Sun

Current design feature recognition mainly depends on the connective attributes of edges or faces in the CAD models, such as convexity, concavity, and tangency. However, it is difficult to uniquely define the mixed connective attributes of the generic features in some cases. A novel generic design feature recognition approach by detecting the hint of topology variation is presented in this study. The core idea includes: 1) the resulting CAD model of a complex part is regarded as formed from an initial basic shape such as roughcast and has been operated by introducing generic design features, which subsequently may cause topology variation; 2) Such topology variations, e.g. vertex elimination, edge partition and face alteration, are utilized to obtain generalized properties of the generic design features, dispensing with the connective attributes. Finally, 1) we demonstrate in the experiments that the approach successfully recognizes the main types of generic design features, both isolate and hybrid features. 2) Furthermore, we exhibit the application of the approach in some engineering examples.

2020 ◽  
Vol 7 (3) ◽  
pp. 367-385
Author(s):  
Yingzhong Zhang ◽  
Yufei Fu ◽  
Jia Jia ◽  
Xiaofang Luo

Abstract Boundary segmentation of solid models is the geometric foundation to reconstruct design features. In this paper, based on the shape evolution analysis for the feature-based modeling process, a novel approach to the automatic boundary segmentation of solid models for reconstructing design features is proposed. The presented approach simulates the designer’s decomposing thinking on how to decompose an existing boundary representation model into a set of design features. First, the modeling traces of design features are formally represented as a set of feature vertex adjacent graphs that use low-dimensional vertex entities and their connection relations. Then, a set of Boolean segmentation loops is searched and extracted from the constructed feature vertex adjacent graphs, which segment the boundary of a solid model into a set of regions with different design feature semantics. In the search process, virtual topology operations are employed to simulate the topological changes resulting from Boolean operations in feature modeling processes. In addition, to realize effective search, search strategies and search algorithms are presented. The segmentation experiments and case study show that the presented approach is feasible and effective for the boundary segmentation of medium-level complex part models. The presented approach lays the foundation for the later reconstruction of design features.


2010 ◽  
Vol 97-101 ◽  
pp. 3371-3375
Author(s):  
Kai Xing Zhang ◽  
Shu Sheng Zhang ◽  
Xiao Liang Bai

The CAD models of mechanical parts usually have many blends and chamfers, and the existence of these machining features can greatly change the geometric and topological patterns of the CAD models, but the existing partial matching algorithms cannot match the CAD models which contain machining features such as blends and chamfers. In this paper, a new approach to partial matching based on the constraints of transition features is proposed. Firstly, the transition features are identified by feature recognition, and then these machining features are removed to eliminate the impacts to the geometric and topological information of the CAD models, and the attribute adjacent graph is reconstructed, finally, the sub-graph isomorphism approach is used to achieve the partial matching. Experimental results show that this method can achieve partial matching of CAD models which contain machining features such as blends and chamfers, and the matching efficiency can satisfy the requirement of the engineering retrieval.


Author(s):  
Rajit Gadh

Abstract The current article presents a new approach to computer aided design based on an abstract geometric entity called a C-loop (Convex/Concave-loop). The approach currently being developed overcomes design limitations in current systems. Design-by-features systems are fast, but not flexible. Design-by-surfaces systems are flexible but cumbersome to use. The current research integrates a design-by-features approach with a design-by-surfaces approach followed by feature recognition. It allows the designer to create a design using design features and to modify these features as needed. The C-loop is the design feature that allows such flexibility. Subsequent to the design step, features pertinent to manufacturing are recognized from the model to perform Design-for-Manufacturability evaluation of the part.


2014 ◽  
Vol 657 ◽  
pp. 750-754 ◽  
Author(s):  
Cezary Grabowik ◽  
Grzegorz Ćwikła ◽  
Witold Janik

In this paper a new solution for design features identification is show. The proposed method is based on manual arbitral identification of the potential design features. Application of this method allows identifying a set of design features which can be used for a design modelling in CAD system. As a result of application of the proposed method a user is able to identify the set of design features. This set can be next applied in the process of design production preparation subsystem formation at the stage of design feature library creation.


Author(s):  
Yuhang Sun ◽  
Yunbao Huang ◽  
Liping Chen ◽  
Qifu Wang ◽  
Sha Wan

Some 3D complex shapes such as stair and compound-hole in engineering design always contains various geometric face types, adjacent geometric constraints and typical design semantics. These 3D shapes can be defined as template design features because they are frequently reused for synchronous shape modeling to greatly accelerate design and analysis process. To recognize the complex template design features, we present a new multi-level attributed graph based shape matching approach. The core idea is the Multi-level Attributed Graph (MLAG), which describes not only the geometry face types such as plane and the geometry relationships between two adjacent faces such as tangency that are usually used for 3D shape retrieval and manufacturing feature recognition, but also the design semantic features among multiple adjacent faces even non-adjacent faces such as boss. Such design semantic feature will greatly benefit MLAG matching process, so that a complex template design feature can be efficiently recognized for design modification. Finally, two experiments with some kinds of template feature recognition are also shown to demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110027
Author(s):  
Byung Chul Kim ◽  
Ilhwan Song ◽  
Duhwan Mun

Manufacturers of machine parts operate computerized numerical control (CNC) machine tools to produce parts precisely and accurately. They build computer-aided manufacturing (CAM) models using CAM software to generate code to control these machines from computer-aided design (CAD) models. However, creating a CAM model from CAD models is time-consuming, and is prone to errors because machining operations and their sequences are defined manually. To generate CAM models automatically, feature recognition methods have been studied for a long time. However, since the recognition range is limited, it is challenging to apply the feature recognition methods to parts having a complicated shape such as jet engine parts. Alternatively, this study proposes a practical method for the fast generation of a CAM model from CAD models using shape search. In the proposed method, when an operator selects one machining operation as a source machining operation, shapes having the same machining features are searched in the part, and the source machining operation is copied to the locations of the searched shapes. This is a semi-automatic method, but it can generate CAM models quickly and accurately when there are many identical shapes to be machined. In this study, we demonstrate the usefulness of the proposed method through experiments on an engine block and a jet engine compressor case.


Author(s):  
Mohsen Rezayat

Abstract An integral part of implementing parallel product and process designs is simulation through numerical analysis. This simulation-driven design requires discretization of the 3D part in an appropriate manner. If the part is thin or has thin sections (e.g., plastic parts), then an analysis model with reduced dimensionality may be more accurate and economical than a standard 3D model. In addition, substantial simplification of some details in the design geometry may be beneficial and desirable in the analysis model. Unfortunately, the majority of CAD systems do not provide the means for abstraction of appropriate analysis models. In this paper we present a new approach, based on midsurface abstraction, which holds significant promise in simplifying simulation-driven design. The method is user-friendly because very little interaction is required to guide the software in its automatic creation of the desired analysis model. It is also robust because it handles typical parts with complex and interacting features. Application of the method for feature recognition and abstraction is also briefly discussed.


2021 ◽  
Author(s):  
Weijuan Cao ◽  
Trevor Robinson ◽  
Hua Yang ◽  
Flavien Boussuge ◽  
Andrew Colligan ◽  
...  

2007 ◽  
Vol 19 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Emmanuel Brousseau ◽  
Stefan Dimov ◽  
Rossitza Setchi

Author(s):  
A. Z. Qamhiyah ◽  
R. D. Venter ◽  
B. Benhabib

Abstract Feature-extraction techniques address the primary limitation of feature-recognition approaches, namely their lack of generalization. This paper presents a boundary-based procedure for the classification and sequential extraction of form features from the CAD models of objects with planar surfaces. Form features are first classified based on their effect on the boundary elements of a basic shape. Geometric reasoning is then used to obtain generalized properties of the form-features’ classes. Finally, form-features’ classes are sequentially extracted based on the recognized properties. At the onset of each extraction stage, the object is viewed as an initial basic shape that has been iteratively altered through the introduction of form features.


Sign in / Sign up

Export Citation Format

Share Document