Logic-Based Evaluation Metrics for Concept Evaluation

Author(s):  
Ang Liu ◽  
Wei Wei ◽  
Stephen C.-Y. Lu

Synthesis is a common activity in engineering design. It is widely recognized to be important to the whole engineering design process in general, and to the early design stages in particular. In the past, however, there remains lack of a set of rigorous metrics to evaluate the effectiveness of performing design synthesis in conceptual design. Based on relevant studies of abductive reasoning in logic, this paper introduces a set of domain-independent design synthesis metric: clarity, feasibility, testability, simplicity, and analogy. For each metrics, the rationale of including it is explained, and a systemic evaluation procedure is prescribed. Individually, each metrics addresses a particular aspect of design synthesis in conceptual design. Collectively, the combined consideration of all metrics as a single vector helps the designer to identify the most promising synthesis outcome, the best design concept, which both satisfies upstream objectives and meets downstream constraints.

Author(s):  
Julian R. Eichhoff ◽  
Felix Baumann ◽  
Dieter Roller

In this paper we demonstrate and compare two complementary approaches to the automatic generation of production rules from a set of given graphs representing sample designs. The first approach generates a complete rule set from scratch by means of frequent subgraph discovery. Whereas the second approach is intended to learn additional rules that fit an existing, yet incomplete, rule set using genetic programming. Both approaches have been developed and tested in the context of an application for automated conceptual engineering design, more specifically functional decomposition. They can be considered feasible, complementary approaches to the automatic inference of graph rewriting rules for conceptual design applications.


Author(s):  
Mary Lou Maher

The knowledge used in the design of engineering systems includes: understanding systems and their components, and the understanding implications of design decisions on other decisions and further problem decomposition This paper presents design as a process and then characterizes the knowledge used in synthesizing design alternatives. A knowledge based approach to design synthesis is proposed, followed by a description of the implementation of a domain independent synthesis framework. The implementation is further illustrated by an example application to structural design.


Author(s):  
Teresa Adams ◽  
Chris Hendrickson ◽  
Paul Christiano

The conventional engineering design process consisting of three phases, synthesis, analysis and evaluation can be extended for solving rehabilitation problems by including a diagnosis phase during which abnormalities and malfunctions are identified and characterized. After diagnosis, the design objectives are clearly specified and the conventional engineering design process can begin. Different problem solving strategies, information representation, and processing are useful for the different phases of rehabilitation design. This paper describes the RETAIN knowledge-based rehabilitation design system which integrates a relational database, production rules and algorithmic functions. RETAIN diagnoses retaining wall failures and synthesizes preliminary rehabilitation designs and cost estimates. Its framework and methodology may be applied to other infrastructure components such as pavements, water and sewage networks, bridge piers and marine structures. RETAIN decomposes rehabilitation problems into influencing failure modes then identifies a set of rehabilitation strategies such that each strategy remedies one or more failure modes. Complete rehabilitation solutions are formed by searching and combining strategy components. Conceptual knowledge for design synthesis is organized in relational database tables. The paper includes an example of design synthesis with relational operations for selecting rehabilitation strategies and forming complete rehabilitation solutions.


Author(s):  
Joshua D. Summers

Peirce, the American philosopher of the late 19th and early 20th centuries, is credited with first observing the triple of reasoning (deductive, inductive, and abductive). These three types of reasoning are discussed as they relate to the engineering design process. The reasoning classes are based upon distinctions between what is given and what is derived with respect to the grounds, the warrants, and the conclusions. Simple definitions are synthesized that agree well with the literature, while distinctions are made where overlapping and often conflicting definitions are found. This distinction leads to the need for separating abductive reasoning and retroductive reasoning. A generalized description of design agrees well with the definition for retroductive reasoning, as is demonstrated in this paper. A brief survey of “traditional” design reasoning methods (rule based reasoning, analogy based reasoning, simulation based reasoning, and constraint based reasoning) is developed to show that these design methods are equivalent or decomposable into the fundamental reasoning classes. This paper provides a discussion in a common framework for comparing design reasoning strategies found in automation systems based upon the fundamental classes.


Author(s):  
Patricia Kristine Sheridan ◽  
Jason A Foster ◽  
Geoffrey S Frost

All Engineering Science students at the University of Toronto take the cornerstone Praxis Sequence of engineering design courses. In the first course in the sequence, Praxis I, students practice three types of engineering design across three distinct design projects. Previously the final design project had the students first frame and then develop conceptual design solutions for a self-identified challenge. While this project succeeded in providing an appropriate foundational design experience, it failed to fully prepare students for the more complex design experience in Praxis II. The project also failed to ingrain the need for clear and concise engineering communication, and the students’ lack of understanding of detail design inhibited their ability to make practical and realistic design decisions. A revised Product Design project in Praxis I was designed with the primary aims of: (a) pushing students beyond the conceptual design phase of the design process, and (b) simulating a real-world work environment by: (i) increasing the interdependence between student teams and (ii) increasing the students’ perceived value of engineering communication.


Science Scope ◽  
2017 ◽  
Vol 041 (01) ◽  
Author(s):  
Nicholas Garafolo ◽  
Nidaa Makki ◽  
Katrina Halasa ◽  
Wondimu Ahmed ◽  
Kristin Koskey ◽  
...  

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 660-665
Author(s):  
Giovanni Formentini ◽  
Núria Boix Rodríguez ◽  
Claudio Favi ◽  
Marco Marconi

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3469
Author(s):  
Ji Han ◽  
Pingfei Jiang ◽  
Peter R. N. Childs

Although products can contribute to ecosystems positively, they can cause negative environmental impacts throughout their life cycles, from obtaining raw material, production, and use, to end of life. It is reported that most negative environmental impacts are decided at early design phases, which suggests that the determination of product sustainability should be considered as early as possible, such as during the conceptual design stage, when it is still possible to modify the design concept. However, most of the existing concept evaluation methods or tools are focused on assessing the feasibility or creativity of the concepts generated, lacking the measurements of sustainability of concepts. The paper explores key factors related to sustainable design with regard to environmental impacts, and describes a set of objective measures of sustainable product design concept evaluation, namely, material, production, use, and end of life. The rationales of the four metrics are discussed, with corresponding measurements. A case study is conducted to demonstrate the use and effectiveness of the metrics for evaluating product design concepts. The paper is the first study to explore the measurement of product design sustainability focusing on the conceptual design stage. It can be used as a guideline to measure the level of sustainability of product design concepts to support designers in developing sustainable products. Most significantly, it urges the considerations of sustainability design aspects at early design phases, and also provides a new research direction in concept evaluation regarding sustainability.


Sign in / Sign up

Export Citation Format

Share Document