Analytical Solutions for Periodic Motions in a Twin-Well Potential Mathieu-Duffing Oscillator

Author(s):  
Dennis M. O’Connor ◽  
Albert C. J. Luo

Analytical solutions for periodic motion in a twin-well potential Mathieu-Duffing oscillator with damping are obtained using the finite Fourier series solutions, and the stability and bifurcation analysis of such periodic motions are completed. To verify the approximate analytical solutions of periodic motions, numerical simulations of the twin-well solutions are presented for Period-1 asymmetric motions. Further, simulation of the unstable solutions is considered to demonstrate the resonant bands separating the twin-wells.

Author(s):  
Albert C. J. Luo ◽  
Dennis M. O’Connor

Analytical solutions for period-m motions in a hardening Mathieu-Duffing oscillator are obtained using the finite Fourier series solutions, and the stability and bifurcation analysis of such periodic motions are completed. To verify the approximate analytical solutions of periodic motions, numerical simulations of the hardening Mathieu-Duffing oscillator are presented. Period-1 asymmetric and period-2 symmetric motions are illustrated.


2014 ◽  
Vol 24 (01) ◽  
pp. 1430004 ◽  
Author(s):  
Albert C. J. Luo ◽  
Dennis M. O'Connor

In this paper, analytical solutions for periodic motions in a parametric hardening Duffing oscillator are presented using the finite Fourier series expression, and the corresponding stability and bifurcation analysis for such periodic motions are carried out. The frequency-amplitude characteristics of asymmetric period-1 and symmetric period-2 motions are discussed. The hardening Mathieu–Duffing oscillator is also numerically simulated to verify the approximate analytical solutions of periodic motions. Period-1 asymmetric and period-2 symmetric motions are illustrated for a better understanding of periodic motions in the hardening Mathieu–Duffing oscillator.


Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, the analytical solutions of periodic motions in a parametric oscillator are presented by the finite Fourier series expansion, and the stability and bifurcation analysis of periodic motions are performed. Numerical illustrations of periodic motions are presented through phase trajectories and analytical spectrum.


Author(s):  
Albert C. J. Luo ◽  
Arash Baghaei Lakeh

In this paper, the approximate analytical solutions of period-1 motion in the periodically forced van der Pol oscillator are obtained by the generalized harmonic balanced method. The stability and bifurcation analysis of the period-1 solutions is completed through the eigenvalue analysis, and numerical illustrations of periodic-1 solutions are given to verify the approximate motion. This investigation provides more accurate solutions of period-1 motions in the van der pol oscillator for a better and comprehensive understanding of motions in such an oscillator.


Author(s):  
Albert C. J. Luo ◽  
Hanxiang Jin

In this paper, analytical solutions of period-1 motions in a time-delayed Duffing oscillator with a periodic excitation are investigated through the Fourier series, and the stability and bifurcation of such periodic motions are discussed by eigenvalue analysis. The symmetric and asymmetric period-1 motions in such time-delayed Duffing oscillator are obtained analytically, and the frequency-amplitude characteristics of period-1 motions in such a time-delayed Duffing oscillator are investigated. Numerical illustrations of period-1 motions are given by numerical and analytical solutions.


2013 ◽  
Vol 23 (03) ◽  
pp. 1330009 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
MOZHDEH S. FARAJI MOSADMAN

In this paper, the analytical dynamics for singularity, switchability, and bifurcations of a 2-DOF friction-induced oscillator is investigated. The analytical conditions of the domain flow switchability at the boundaries and edges are developed from the theory of discontinuous dynamical systems, and the switchability conditions of boundary flows from domain and edge flows are presented. From the singularity and switchability of flow to the boundary, grazing, sliding and edge bifurcations are obtained. For a better understanding of the motion complexity of such a frictional oscillator, switching sets and mappings are introduced, and mapping structures for periodic motions are adopted. Using an eigenvalue analysis, the stability and bifurcation analysis of periodic motions in the friction-induced system is carried out. Analytical predictions and parameter maps of periodic motions are performed. Illustrations of periodic motions and the analytical conditions are completed. The analytical conditions and methodology can be applied to the multi-degrees-of-freedom frictional oscillators in the same fashion.


Author(s):  
Albert C. J. Luo ◽  
Jianzhe Huang

In this paper, the analytical, approximate solutions of period-1 motions in the nonlinear damping, periodically forced, Duffing oscillator is obtained. The corresponding stability and bifurcation analysis of the HB2 approximate solution of period-1 motions in the forced Duffing oscillator is carried out. Numerical illustrations of period-1 motions are presented.


Author(s):  
Albert C. J. Luo ◽  
Siyuan Xing

In recent decades, nonlinear time-delay systems were often applied in controlling nonlinear systems, and the stability of such time-delay systems was very actively discussed. Recently, one was very interested in periodic motions in nonlinear time-delay systems. Especially, the semi-analytical solutions of periodic motions in time-delay systems are of great interest. From the semi-analytical solutions, the nonlinearity and complexity of periodic motions in the time-delay systems can be discussed. In this paper, time-delay effects on periodic motions of a periodically forced, damped, hardening, Duffing oscillator are analytically discussed through a semi-analytical method. The semi-analytical method is based on discretization of the differential equation of such a Duffing oscillator to obtain the corresponding implicit discrete mappings. Through such implicit mappings and mapping structures of periodic motions, period-1 motions varying with time-delay are discussed, and the corresponding stability and bifurcation analysis of periodic motions are carried out through eigenvalue analysis. Numerical results of periodic motions are illustrated to verify analytical predictions. The corresponding harmonic amplitude spectrums and harmonic phases are presented for a better understanding of periodic motions in such a nonlinear oscillator.


Author(s):  
Albert C. J. Luo ◽  
Arash Baghaei Lakeh

In this paper the approximate analytical solutions of period-1 motion in the periodically forced van der Pol oscillator are obtained by the generalized harmonic balance (HB) method. Such an approximate solution of periodic motion is given by the Fourier series expression, and the convergence of such an expression is guaranteed by the Fourier series theory of periodic functions. The approximate solution is different from traditional, approximate solution because the number of total harmonic terms (N) is determined by the precision of harmonic amplitude quantity level, set by the investigator (e.g., AN≤ɛ and ɛ=10-8). The stability and bifurcation analysis of the period-1 solutions is completed through the eigenvalue analysis of the coefficient dynamical systems of the Fourier series expressions of periodic solutions, and numerical illustrations of period-1 motions are compared to verify the analytical solutions of periodic motions. The trajectories and analytical harmonic amplitude spectrum for stable and unstable periodic motions are presented. The harmonic amplitude spectrum shows the harmonic term effects on periodic motions, and one can directly know which harmonic terms contribute on periodic motions and the convergence of the Fourier series expression is clearly illustrated.


Author(s):  
Albert C. J. Luo ◽  
Mehul T. Patel

In this paper, the stability and bifurcation of periodic motions in periodically forced oscillator with multiple discontinuities is investigated. The generic mappings are introduced for the analytical prediction of periodic motions. Owing to the multiple discontinuous boundaries, the mapping structures for periodic motions are very complicated, which causes more difficulty to obtain periodic motions in such a dynamical system. The analytical prediction of complex periodic motions is carried out and verified numerically, and the corresponding stability and bifurcation analysis are performed. Due to page limitation, grazing and stick motions and chaos in this system will be investigated further.


Sign in / Sign up

Export Citation Format

Share Document