A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem

Author(s):  
Shrinath Deshpande ◽  
Anurag Purwar

The classic Burmester problem is concerned with computing dimensions of planar four-bar linkages consisting of all revolute joints for five-pose problems. In the context of motion generation, each pose can be seen as a constraint that the coupler of a planar four-bar mechanism needs to interpolate or approximate through. We define extended Burmester problem as the one where all types of planar four-bars consisting of dyads of type RR, PR, RP, or PP (R: revolute, P: prismatic) and their dimensions need to be computed for n-geometric-constraints, where a geometric constraint can be an algebraically expressed constraint on the pose, or location of the fixed or moving pivots or something equivalent. In addition, we include both linear and non-linear and exact and approximate constraints. This extension also includes the problems where there is no solution to the classic Burmester problem, but designers would still like to design a four-bar that may come closest to capturing their intent. Such problems are representative of the problems that machine designers grapple with while designing linkage systems for a variety of constraints, which are not merely a set of poses. Recently, we have derived a unified form of geometric constraints of all types of dyads (RR, RP, PR, and PP) in the framework of kinematic mapping and planar quaternions, which map to generalized manifolds (G-manifolds) in the image space of planar displacements. The given poses map to points in the image space. Thus, the problem of synthesis is reduced to minimizing the algebraic error of fitting between the image points and the G-manifolds. We have also created a simple, two-step algorithm using Singular Value Decomposition (SVD) for the least-squares fitting of the manifolds, which yields a candidate space of solution. By imposing two fundamental quadratic constraints on the candidate solutions, we are able to simultaneously determine both the type and dimensions of the planar four-bar linkages. In this paper, we present 1) a unified approach for solving the extended Burmester problem by showing that all linear- and non-linear constraints can be handled in a unified way without resorting to special cases, 2) in the event of no or unsatisfactory solutions to the synthesis problem certain constraints can be relaxed, and 3) such constraints can be approximately satisfied by minimizing the algebraic fitting error using Lagrange Multiplier method. In doing so, we generalize our earlier formulation and present a new algorithm, which solves new problems including optimal approximate synthesis of Burmester problem with no exact solutions.

Author(s):  
Q. J. Ge ◽  
Ping Zhao ◽  
Anurag Purwar

This paper studies the problem of planar four-bar motion approximation from the viewpoint of extraction of geometric constraints from a given set of planar displacements. Using the Image Space of planar displacements, we obtain a class of quadrics, called Generalized- or G-manifolds, with eight linear and homogeneous coefficients as a unified representation for constraint manifolds of all four types of planar dyads, RR, PR, and PR, and PP. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of G-manifolds that best fit the image points in the least squares sense. This least squares problem is solved using Singular Value Decomposition. The linear coefficients associated with the smallest singular values are used to define a pencil of quadrics. Additional constraints on the linear coefficients are then imposed to obtain a planar four-bar linkage that best guides the coupler through the given displacements. The result is an efficient and linear algorithm that naturally extracts the geometric constraints of a motion and leads directly to the type and dimensions of a mechanism for motion generation.


1972 ◽  
Vol 9 (4) ◽  
pp. 758-768 ◽  
Author(s):  
P. M. Robinson

A general multivariate non-linear regression model is considered, including as special cases linear regression when the regression matrix is of less than full rank, simultaneous equations systems and regression on an unobservable predetermined variable. Given a time-series of observations at unit intervals we consider the estimation of the parameters, subject to non-linear constraints, by minimizing a criterion based on the Fourier-transformed model. We allow the residuals to be generated by a stationary, linear, process and establish asymptotic properties of our estimates.


Author(s):  
Q. J. Ge ◽  
Anurag Purwar ◽  
Ping Zhao ◽  
Shrinath Deshpande

This paper studies the problem of planar four-bar motion generation from the viewpoint of extraction of geometric constraints from a given set of planar displacements. Using the image space of planar displacements, we obtain a class of quadrics, called generalized- or G-manifolds, with eight linear and homogeneous coefficients as a unified representation for constraint manifolds of all four types of planar dyads, RR, PR, and PR, and PP. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of G-manifolds that best fit the image points in the least squares sense. This least squares problem is solved using singular value decomposition (SVD). The linear coefficients associated with the smallest singular values are used to define a pencil of quadrics. Additional constraints on the linear coefficients are then imposed to obtain a planar four-bar linkage that best guides the coupler through the given displacements. The result is an efficient and linear algorithm that naturally extracts the geometric constraints of a motion and leads directly to the type and dimensions of a mechanism for motion generation.


Author(s):  
Anurag Purwar ◽  
Shrinath Deshpande ◽  
Q. J. Ge

MotionGen is an indigenously developed app for Apple iOS and Google Android platforms to help mechanism designers solve planar four-bar motion generation problem. The app is a computer implementation of authors’ recent work in developing a unified framework for the synthesis and simulation of planar four-bar mechanisms for the motion generation problem. Simplicity, high-utility, and wide-spread adoption of planar four-bar linkages have made them one of the most studied topics in Kinematics leading to development of algorithms and theories that deal with path-, function-, and motion generation-problems. Yet to date, there have been no attempts to develop efficient computational algorithms amenable to real-time computation of both type and dimensions of planar four-bar mechanisms for a given motion. MotionGen solves this problem effectively by extracting the geometric constraints of a given motion to provide the best dyad-types as well as dimensions of a total of up to six four-bar linkages. The unified algorithm also admits additional practical constraints, such as imposition of fixed- and moving-pivot and -line locations along with mixed exact- and approximate-synthesis scenarios. In that regard, its synthesis capabilities set it apart from other softwares of its ilk. However, its simulation approach also departs from more traditional methods, which typically involves assembling four rigid bodies and then designating fixed and moving links. Instead, the MotionGen requires users to assemble only two of the geometric constraints of mechanical dyads for quick prototyping of planar four-bar linkages. The app is equipped with an intuitive graphical user interface that allows a fluid dialog with the user to facilitate rapid manipulation and visualization of linkages.


2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Shrinath Deshpande ◽  
Anurag Purwar

The classic Burmester problem is concerned with computing dimensions of planar four-bar linkages consisting of all revolute joints for five-pose problems. We define extended Burmester problem as the one where all types of planar four-bars consisting of dyads of type RR, PR, RP, or PP (R: revolute, P: prismatic) and their dimensions need to be computed for n-geometric constraints, where a geometric constraint is an algebraically expressed constraint on the pose, pivots, or something equivalent. In addition, we extend it to linear, nonlinear, exact, and approximate constraints. This extension also includes the problems when there is no solution to the classic Burmester problem, but designers would still like to design a four-bar that may come closest to capturing their intent. Machine designers often grapple with such problems while designing linkage systems where the constraints are of different varieties and usually imprecise. In this paper, we present (1) a unified approach for solving the extended Burmester problem by showing that all linear and nonlinear constraints can be handled in a unified way without resorting to special cases, (2) in the event of no or unsatisfactory solutions to the synthesis problem, certain constraints can be relaxed, and (3) such constraints can be approximately satisfied by minimizing the algebraic fitting error using Lagrange multiplier method. We present a new algorithm, which solves new problems including optimal approximate synthesis of Burmester problem with no exact solutions.


1972 ◽  
Vol 9 (04) ◽  
pp. 758-768 ◽  
Author(s):  
P. M. Robinson

A general multivariate non-linear regression model is considered, including as special cases linear regression when the regression matrix is of less than full rank, simultaneous equations systems and regression on an unobservable predetermined variable. Given a time-series of observations at unit intervals we consider the estimation of the parameters, subject to non-linear constraints, by minimizing a criterion based on the Fourier-transformed model. We allow the residuals to be generated by a stationary, linear, process and establish asymptotic properties of our estimates.


2017 ◽  
Vol 9 (2) ◽  
Author(s):  
Anurag Purwar ◽  
Shrinath Deshpande ◽  
Q. J. Ge

In this paper, we have presented a unified framework for generating planar four-bar motions for a combination of poses and practical geometric constraints and its implementation in MotionGen app for Apple's iOS and Google's Android platforms. The framework is based on a unified type- and dimensional-synthesis algorithm for planar four-bar linkages for the motion-generation problem. Simplicity, high-utility, and wide-spread adoption of planar four-bar linkages have made them one of the most studied topics in kinematics leading to development of algorithms and theories that deal with path, function, and motion generation problems. Yet to date, there have been no attempts to develop efficient computational algorithms amenable to real-time computation of both type and dimensions of planar four-bar mechanisms for a given motion. MotionGen solves this problem in an intuitive fashion while providing high-level, rich options to enforce practical constraints. It is done effectively by extracting the geometric constraints of a given motion to provide the best dyad types as well as dimensions of a total of up to six four-bar linkages. The unified framework also admits a plurality of practical geometric constraints, such as imposition of fixed and moving pivot and line locations along with mixed exact and approximate synthesis scenarios.


1980 ◽  
Vol 12 (4) ◽  
pp. 972-999 ◽  
Author(s):  
Søren Glud Johansen ◽  
Shaler Stidham

The problem of controlling input to a stochastic input-output system by accepting or rejecting arriving customers is analyzed as a semi-Markov decision process. Included as special cases are a GI/G/1 model and models with compound input and/or output processes, as well as several previously studied queueing-control models. We establish monotonicity of socially and individually optimal acceptance policies and the more restrictive nature of the former, with random rewards for acceptance and both customer-oriented and system-oriented non-linear waiting costs. Distinctive features of our analysis are (i) that it allows dependent interarrival times and (ii) that the monotonicity proofs do not rely on the standard concavity-preservation arguments.


Sign in / Sign up

Export Citation Format

Share Document