Volume 5A: 41st Mechanisms and Robotics Conference
Latest Publications


TOTAL DOCUMENTS

67
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791858172

Author(s):  
Simon Laudahn ◽  
Franz Irlinger ◽  
Kassim Abdul-Sater

In this paper we present a computational approximate synthesis procedure for the planar RR chain. Our approach is based on a grid search and takes an arbitrary amount of user-defined task positions for the two outer bodies of the chain and restrictions for both joints into account. The result of this synthesis approach is not only one optimal solution, but a list of several possible solutions which are ranked according to their performance. The approach aims at being used in building block-based synthesis procedures of more complex linkages. The method shall later be included into a CAD-integrated design tool for planar linkages.


Author(s):  
Carlotta Mummolo ◽  
William Z. Peng ◽  
Carlos Gonzalez ◽  
Joo H. Kim

A novel theoretical framework for the identification of the balance stability regions of biped systems is implemented on a real robotic platform. With the proposed method, the balance stability capabilities of a biped robot are quantified by a balance stability region in the state space of center of mass (COM) position and velocity. The boundary of such a stability region provides a threshold between balanced and falling states for the robot by including all possible COM states that are balanced with respect to a specified feet/ground contact configuration. A COM state outside of the stability region boundary is the sufficient condition for a falling state, from which a change in the specified contact configuration is inevitable. By specifying various positions of the robot’s feet on the ground, the effects of different contact configurations on the robot’s balance stability capabilities are investigated. Experimental walking trajectories of the robot are analyzed in relationship with their respective stability boundaries, to study the robot balance control during various gait phases.


Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu

The paper presents a simple and effective kinematic model and methodology, based on Ting’s N-bar rotatability laws [2629], to assess the extent of the position uncertainty caused by joint clearances for any linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting’s rotatability laws. The significant contribution includes (1) the clearance link model for P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearance from the input error, (2) a simple uncertainty linkage model that features a deterministic instantaneous structure mounted on non-deterministic flexible legs, (3) the generality of the method, which is effective for multiloop linkages and parallel manipulators. The discussion is carried out through symmetrically constructed planar eight-bar parallel robots. It is found that the uncertainty region of a three-leg parallel robot is enclosed by a hexagon, while that of its serial counterpart is enclosed by a circle inscribed by the hexagon. A numerical example is also presented. The finding and proof, though only based on three-leg planar 8-bar parallel robots, may have a wider implication suggesting that based on kinematics, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in parallel robots cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


Author(s):  
Joshua Crews ◽  
Ashok Midha ◽  
Lokeswarappa R. Dharani

A method is provided and validated for redesigning compliant segments to improve their fatigue, creep, and stress relaxation performance. The method reduces the bending stress in the polymer portion of the compliant segment without the need for overall mechanism redesign, by introducing metallic reinforcement and by matching the force-deflection response of the redesigned segment to that of the baseline segment. An example redesign case study is presented and validated with experimental testing using a unique deflection testing device designed for fixed-free compliant mechanisms. This vein of research is undertaken using metallic reinforcement (inserts) toward the development of a new class of compliant mechanisms with significantly greater performance, particularly insofar as the problems of fatigue and creep are concerned.


Author(s):  
Ernur Karadoğan ◽  
Brian P. DeJong

This paper presents the kinematics and dynamics of a spherical robot with a mechanical driving system that consists of four cable-actuated moving masses. Four cable-pulley systems control four tetrahedrally-located movable masses and the robot functions by shifting its center of mass to create rolling torque. The cable actuation decreases overall mass and, therefore, allow for less energy expenditure, as compared to other moving mass mechanisms that translate the masses by powered-screws. Additionally, the design allows the center of mass for the static (spherical shell, electronics, motors etc.) and dynamic mass (moving masses) to be at the geometric center at any given time, therefore has potential for tumbleweeding when needed. The derived equations of motion are verified by means of simulations.


Author(s):  
Wenshuo Ma ◽  
Yan Xie ◽  
Jingjun Yu ◽  
Xu Pei

Dynamic performance is of great importance to compliant mechanisms which are employed in dynamic applications, especially if the dynamic problems in DOC (degree of constraint) directions are to be met. An investigation on the dynamic characteristics of a 2R compliant mechanism is presented. Based on the substructure techniques, the in-plane dynamic model of the preceding compliant mechanisms is developed. The natural frequencies and sensitivities are then analyzed. The numerical result verifies the validity of the proposed method. Finally, optimal design of compliant mechanism is investigated.


Author(s):  
Joep P. A. Nijssen ◽  
Giuseppe Radaelli ◽  
Just L. Herder ◽  
Charles J. Kim ◽  
J. B. Ring

In this paper a first iteration of a new scoliosis brace design and correction strategy is presented using compliant shell mechanisms to create both motion and correction. The motion profile of the human spine was found using a segmented motion capture approach. The brace was designed for a case study using a conceptual ellipsoid design approach. The force controlled correction profile was re-invented using a two fold zero and positive stiffness profile. These force generators were built and validated to prove their zero stiffness characteristic. The kinematic part of the brace was detail designed with the correct order of magnitude and validated through their force-deflection characteristic. The end result was a first iteration of a new brace validated and analysed on some critical components which can form the basis for a future biomechanical study.


Author(s):  
Jeong H. Yoon ◽  
Daniel Sun ◽  
Vidur Sanandan ◽  
Dennis Hong

Series Elastic Actuators (SEA) have been in development for multiple decades. In spite of this, few design guidelines exist and stiffness selection for the compliant element still remains a trial-and-error process. In this paper, we experimentally validated the unlumped model first proposed by Orekhov for Rotary SEA (RSEA) and outlined a design methodology for selecting the spring stiffness based on the open loop force control bandwidth of unlumped model for series elastic actuators. We modified the unlumped model to apply to Rotary SEAs. Through experimental system identification, we demonstrated that our new unlumped model for RSEA is a valid model of actuator dynamics. Additionally, we recommended design guidelines for RSEA to achieve desired force control bandwidth based on the pure torque source assumption. An example of the design process was given and actuator performance was verified through dynamic simulations in ADAMS.


Author(s):  
Thomas Solatges ◽  
Mathieu Rognant ◽  
Sébastien Rubrecht ◽  
Eric Courteille ◽  
Philippe Bidaud

This paper presents a design process based on an advanced flexible robots modeling tool associated with realistic actuators models and pre-defined control architecture. This process implements dedicated feasibility and performance indicators, which are used to evaluate a design and its sensitivity on the considered parameters. The proposed approach is illustrated with theoretical and experimental results obtained with the YAKA robot.


Author(s):  
Ali Hatamizadeh ◽  
Yuanping Song ◽  
Jonathan B. Hopkins

In this paper, we introduce a new computational tool called the Boundary Learning Optimization Tool (BLOT) that rapidly identifies the boundary of the performance capabilities achieved by a general flexure topology if its geometric parameters are allowed to vary from their smallest allowable feature sizes to the largest geometrically compatible feature sizes for a given constituent material. The boundaries generated by the BLOT fully define a flexure topology’s design space and allow designers to visually identify which geometric versions of their synthesized topology best achieve a desired combination of performance capabilities. The BLOT was created as a complementary tool to the Freedom And Constraint Topologies (FACT) synthesis approach in that the BLOT is intended to optimize the geometry of the flexure topologies synthesized using the FACT approach. The BLOT trains artificial neural networks to create sufficiently accurate models of parameterized flexure topologies using the fewest number of design instantiations and their corresponding numerically generated performance solutions. These models are then used by an efficient algorithm to plot the desired topology’s performance boundary. A FACT-synthesized flexure topology is optimized using the BLOT as a case study.


Sign in / Sign up

Export Citation Format

Share Document