A Task Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds

Author(s):  
Q. J. Ge ◽  
Ping Zhao ◽  
Anurag Purwar

This paper studies the problem of planar four-bar motion approximation from the viewpoint of extraction of geometric constraints from a given set of planar displacements. Using the Image Space of planar displacements, we obtain a class of quadrics, called Generalized- or G-manifolds, with eight linear and homogeneous coefficients as a unified representation for constraint manifolds of all four types of planar dyads, RR, PR, and PR, and PP. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of G-manifolds that best fit the image points in the least squares sense. This least squares problem is solved using Singular Value Decomposition. The linear coefficients associated with the smallest singular values are used to define a pencil of quadrics. Additional constraints on the linear coefficients are then imposed to obtain a planar four-bar linkage that best guides the coupler through the given displacements. The result is an efficient and linear algorithm that naturally extracts the geometric constraints of a motion and leads directly to the type and dimensions of a mechanism for motion generation.

Author(s):  
Q. J. Ge ◽  
Anurag Purwar ◽  
Ping Zhao ◽  
Shrinath Deshpande

This paper studies the problem of planar four-bar motion generation from the viewpoint of extraction of geometric constraints from a given set of planar displacements. Using the image space of planar displacements, we obtain a class of quadrics, called generalized- or G-manifolds, with eight linear and homogeneous coefficients as a unified representation for constraint manifolds of all four types of planar dyads, RR, PR, and PR, and PP. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of G-manifolds that best fit the image points in the least squares sense. This least squares problem is solved using singular value decomposition (SVD). The linear coefficients associated with the smallest singular values are used to define a pencil of quadrics. Additional constraints on the linear coefficients are then imposed to obtain a planar four-bar linkage that best guides the coupler through the given displacements. The result is an efficient and linear algorithm that naturally extracts the geometric constraints of a motion and leads directly to the type and dimensions of a mechanism for motion generation.


Author(s):  
Ping Zhao ◽  
Xiangyun Li ◽  
Anurag Purwar ◽  
Kartik Thakkar ◽  
Q. J. Ge

This paper studies the problem of spherical 4R motion approximation from the viewpoint of extraction of circular geometric constraints from a given set of spherical displacements. This paper extends our planar 4R linkage synthesis work to the spherical case. By utilizing kinematic mapping and quaternions, we map spherical displacements into points and the workspace constraints of the coupler into intersection of algebraic quadrics (called constraint manifold), respectively, in the image space of displacements. The problem of synthesizing a spherical 4R linkage is reduced to finding a pencil of quadrics that best fit the given image points in the least squares sense. Additional constraints on the pencil identify the quadrics that represent a spherical circular constraint. The geometric parameters of the quadrics encode information about the linkage parameters which are readily computed to obtain a spherical 4R linkage that best navigates through the given displacements. The result is an efficient and largely linear method for spherical four-bar motion generation problem.


2016 ◽  
Vol 8 (6) ◽  
Author(s):  
Xiangyun Li ◽  
Jun Wu ◽  
Q. J. Ge

In an earlier work, we have combined a curve fitting scheme with a type of shape descriptor, Fourier descriptor (FD), to develop a unified method to the synthesis of planar four-bar linkages for generation of both open and closed paths. In this paper, we aim to extend the approach to the synthesis of planar four-bar linkages for motion generation in an FD-based motion fitting scheme. Using FDs, a given motion is represented by two finite harmonic series, one for translational component of the motion and the other for rotational component. It is shown that there is a simple linear relationship between harmonic content of the rotational component and that of the translational component for a planar four-bar coupler motion. Furthermore, it is shown that the rotational component of the given motion identifies a subset of design parameters of a four-bar linkage including link ratios, while the translational component determines the rest of the design parameters such as locations of the fixed pivots. This leads naturally to a decomposed design space for four-bar mechanism synthesis for approximate motion generation.


Author(s):  
Xiangyun Li ◽  
Xin Ge ◽  
Anurag Purwar ◽  
Q. J. Ge

This paper presents a single, unified and efficient algorithm for animating the motions of the coupler of all four-bar mechanisms formed with revolute (R) and prismatic (P) joints. This is achieved without having to formulate and solve the loop closure equation associated with each type of four-bar linkages separately. In our previous paper on four-bar linkage synthesis, we map the planar displacements from Cartesian to image space using planar quaternion. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of Generalized- or G-manifolds that best fit the image points in the least squares sense. The three planar dyads associated with Generalized G-manifolds are RR, PR and RP which could construct six types of four-bar mechanisms. In this paper, we show that the same unified formulation for linkage synthesis leads to a unified algorithm for linkage analysis and simulation as well. Both the unified synthesis and analysis algorithms have been implemented on Apple’s iOS platform.


2012 ◽  
Vol 203 ◽  
pp. 142-147 ◽  
Author(s):  
Ming Hao Wang ◽  
Gang Liu ◽  
Hong Qing Hou

For the solution of an infinite number of LMI in the parameters trajectory of LPV system, a method based on the tensor product transformation is proposed to tranform the LPV system into the convex polytopic structure. Firstly, discretizing the given LPV system within the interzone of the changing parameters and storing it into a tensor, and then using higher order singular value decomposition (HOSVD), discarding smaller and non-zero singular values and their corresponding singular vectors, reconstructing the reduced-rank tensor to obtain a finite number of LTI vertex systems. The final example shows that the convex polytopic system obtained by this method can substitute the original LPV system within the allowed error.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiangyun Li ◽  
Q. J. Ge ◽  
Feng Gao

This paper studies the problem of spatial linkage synthesis for motion generation from the perspective of extracting geometric constraints from a set of specified spatial displacements. In previous work, we have developed a computational geometric framework for integrated type and dimensional synthesis of planar and spherical linkages, the main feature of which is to extract the mechanically realizable geometric constraints from task positions, and thus reduce the motion synthesis problem to that of identifying kinematic dyads and triads associated with the resulting geometric constraints. The proposed approach herein extends this data-driven paradigm to spatial cases, with the focus on acquiring the point-on-a-sphere and point-on-a-plane geometric constraints which are associated with those spatial kinematic chains commonly encountered in spatial mechanism design. Using the theory of kinematic mapping and dual quaternions, we develop a unified version of design equations that represents both types of geometric constraints, and present a simple and efficient algorithm for uncovering them from the given motion.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiangyun Li ◽  
Xin Ge ◽  
Anurag Purwar ◽  
Q. J. Ge

This paper presents a single, unified, and efficient algorithm for animating the coupler motions of all four-bar mechanisms formed with revolute (R) and prismatic (P) joints. This is achieved without having to formulate and solve the loop closure equation for each type of four-bar linkages separately. Recently, we developed a unified algorithm for synthesizing various four-bar linkages by mapping planar displacements from Cartesian space to the image space using planar quaternions. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of generalized manifolds (or G-manifolds) that best fit the image points in the least squares sense. In this paper, we show that the same unified formulation for linkage synthesis leads to a unified algorithm for linkage analysis and simulation as well. Both the unified synthesis and analysis algorithms have been implemented on Apple's iOS platform.


Author(s):  
Shrinath Deshpande ◽  
Anurag Purwar

The classic Burmester problem is concerned with computing dimensions of planar four-bar linkages consisting of all revolute joints for five-pose problems. In the context of motion generation, each pose can be seen as a constraint that the coupler of a planar four-bar mechanism needs to interpolate or approximate through. We define extended Burmester problem as the one where all types of planar four-bars consisting of dyads of type RR, PR, RP, or PP (R: revolute, P: prismatic) and their dimensions need to be computed for n-geometric-constraints, where a geometric constraint can be an algebraically expressed constraint on the pose, or location of the fixed or moving pivots or something equivalent. In addition, we include both linear and non-linear and exact and approximate constraints. This extension also includes the problems where there is no solution to the classic Burmester problem, but designers would still like to design a four-bar that may come closest to capturing their intent. Such problems are representative of the problems that machine designers grapple with while designing linkage systems for a variety of constraints, which are not merely a set of poses. Recently, we have derived a unified form of geometric constraints of all types of dyads (RR, RP, PR, and PP) in the framework of kinematic mapping and planar quaternions, which map to generalized manifolds (G-manifolds) in the image space of planar displacements. The given poses map to points in the image space. Thus, the problem of synthesis is reduced to minimizing the algebraic error of fitting between the image points and the G-manifolds. We have also created a simple, two-step algorithm using Singular Value Decomposition (SVD) for the least-squares fitting of the manifolds, which yields a candidate space of solution. By imposing two fundamental quadratic constraints on the candidate solutions, we are able to simultaneously determine both the type and dimensions of the planar four-bar linkages. In this paper, we present 1) a unified approach for solving the extended Burmester problem by showing that all linear- and non-linear constraints can be handled in a unified way without resorting to special cases, 2) in the event of no or unsatisfactory solutions to the synthesis problem certain constraints can be relaxed, and 3) such constraints can be approximately satisfied by minimizing the algebraic fitting error using Lagrange Multiplier method. In doing so, we generalize our earlier formulation and present a new algorithm, which solves new problems including optimal approximate synthesis of Burmester problem with no exact solutions.


Author(s):  
Xiangyun Li ◽  
Ping Zhao ◽  
Q. J. Ge

This paper deals with the classical problem of dimensional synthesis of planar four-bar linkages for motion generation. Using Fourier Descriptors, a given motion is represented by two finite harmonic series, one for translational component of the motion and the other for rotational component. It is shown that there is a simple linear relationship between harmonic content of the rotational motion and that of the translational motion for a planar four-bar linkage. Furthermore, it is shown that the rotational component can be used to identify the initial angle and the link ratios of a four-bar linkage. The rest of the design parameters of a four-bar linkage such as location of the fixed and moving pivots can be obtained from the translational component of the given motion. This leads naturally to a decomposed design space for four-bar motion synthesis for approximate motion generation.


Author(s):  
Ilir Murturi

In mathematical statistics, an interesting and common problem is finding the best linear or non-linear regression equations that express the relationship between variables or data. The method of least squares (MLS) represents one of the oldest procedures among multiple techniques to determine the best fit line to the given data through simple calculus and linear algebra. Notably, numerous approaches have been proposed to compute the least-squares. However, the proposed methods are based on the control flow paradigm. As a result, this chapter presents the MLS transformation from control flow logic to the dataflow paradigm. Moreover, this chapter shows each step of the transformation, and the final kernel code is presented.


Sign in / Sign up

Export Citation Format

Share Document