An Analytical Solution for the Nonlinear Vibration of Rotating, Thin Disks

Author(s):  
Albert C. J. Luo ◽  
C. D. Mote

Abstract The response, natural frequencies for the linear and nonlinear vibrations of rotating disks are given analytically through the Luo and Mote’s plate theory of 1998. The results for the nonlinear vibration can reduce to the ones for the linear vibration when the nonlinear effects vanish, and they are applicable to disks experiencing large-amplitude displacement or initial flatness and waviness. The natural frequencies for symmetric and asymmetric responses of a 3.5-inch diameter computer memory disk as an example are predicted through the linear theory, the von Karman theory and the new plate theory. The hardening of rotating disks occurs when nodal-diameter numbers are small and the softening of rotating disks occurs when nodal-diameter numbers becomes larger. The critical speeds of softening disks decrease with increasing deflection amplitudes.

2000 ◽  
Vol 122 (4) ◽  
pp. 376-383 ◽  
Author(s):  
Albert C. J. Luo ◽  
C. D. Mote,

The response and natural frequencies for the linear and nonlinear vibrations of rotating disks are given analytically through the new plate theory proposed by Luo in 1999. The results for the nonlinear vibration can reduce to the ones for the linear vibration when the nonlinear effects vanish and for the von Karman model when the nonlinear effects are modified. They are applicable to disks experiencing large-amplitude displacement or initial flatness and waviness. The natural frequencies for symmetric and asymmetric responses of a 3.5-inch diameter computer memory disk as an example are predicted through the linear theory, the von Karman theory and the new plate theory. The hardening of rotating disks occurs when nodal-diameter numbers are small and the softening of rotating disks occurs when nodal-diameter numbers become larger. The critical speeds of the softening disks decrease with increasing deflection amplitudes. [S0739-3717(00)02004-3]


Author(s):  
Albert C. J. Luo ◽  
Nader Saniei ◽  
William Ray Harp

Thermal effects on the natural frequency for the nonlinear free vibration of co-rotating disks are investigated for non-uniform temperature distributions relative to airflow induced by disk rotation. The natural frequencies for symmetric and asymmetric responses of a 3.5 inch diameter computer memory disk are calculated. When the disk is heated, its stiffness becomes larger for the two lowest nodal diameter numbers and smaller for the other nodal diameter numbers. It implies that the vibration of heated, rotating disks for the higher nodal diameter numbers may be induced more easily than the cooled one.


2000 ◽  
Author(s):  
Albert C. J. Luo ◽  
Nader Saniei

Abstract Thermal effects on the natural frequency for the nonlinear free vibration of rotating disks are investigated for non-uniform temperature distributions relative to the laminar and turbulent airflow induced by disk rotation. The natural frequencies for symmetric and asymmetric responses of a 3.5 inch diameter computer memory disk are calculated. When the disk is heated, its stiffness becomes larger for the two lowest nodal diameter numbers and smaller for the other nodal diameter numbers. It implies that the vibration of heated, rotating disks for the higher nodal diameter numbers may be induced more easily than the cooled one.


1999 ◽  
Vol 66 (4) ◽  
pp. 1017-1021 ◽  
Author(s):  
A. A. Renshaw

The natural frequencies and transverse stiffness of centrally damped, circular disks are computed taking into account the flexibility of the central clamp and the thickness of the damped part of the disk. When compared to experimental vibration data, these predictions are more accurate than the traditional, perfect clamping predictions, particularly, for zero and one-nodal-diameter vibration modes. The reduction in natural frequency or transverse stiffness caused by clamping flexibility can be mitigated either by increasing the clamping stiffness or by increasing the hub thickness, defined here as the thickness of the disk sandwiched by the central clamp. A design study of these two alternatives for both stationary and rotating disks shows that increasing the hub thickness is often a more attractive design alternative.


1998 ◽  
Vol 120 (2) ◽  
pp. 475-483 ◽  
Author(s):  
L. Yang ◽  
S. G. Hutton

An analysis of nonlinear vibrations of an elastically-constrained rotating disk is developed. The equations of motion, which are two coupled nonlinear partial differential equations corresponding to the transverse force equilibrium and to the deformation compatibility, are first developed by using von Karman thin plate theory. Then the stress function is analytically solved from the compatibility equation by assuming a multi-mode transverse displacement field. Galerkin’s method is applied to transform the force equilibrium equation into a set of coupled nonlinear ordinary differential equations in terms of time functions. Finally, numerical integration is used to solve the time governing equations, and the effects of nonlinearity on the vibrations of a rotating disk are discussed.


2015 ◽  
Vol 61 (2) ◽  
pp. 161-178 ◽  
Author(s):  
G. Abdollahzadeh ◽  
M. Ahmadi

AbstractIn this stud y, we attempt to analyse free nonlinear vibrations of buckling in laminated composite beams. Two new methods are applied to obtain the analytical solution of the nonlinear governing equation of the problem. The effects of different parameters on the ratio of nonlinear to linear natural frequencies of the beams are studied. These methods give us an agreement with numerical results for the whole range of the oscillation amplitude.


2013 ◽  
Vol 80 (4) ◽  
Author(s):  
Lianhua Wang ◽  
Jianjun Ma ◽  
Yueyu Zhao ◽  
Qijian Liu

In this study, the nonlinear equation of motion of the beam on the elastic foundation is obtained via the Newton's second law of motion, and its free vibration nature is investigated. Considering the inextensional condition, the planar model of the beam accounting for the effects of the rotary inertia is derived. Then, the linear vibration and nonlinear vibration of the beam on the elastic foundation are examined. It is shown that the cut-off frequency can be observed in the frequency spectrum of the beam response. The effects of the rotary inertia on the natural frequencies are systematically investigated. Finally, the frequency differences, due to the different foundation models, and the possible modal interaction of the beam are discussed.


Author(s):  
Longxiang Yang ◽  
Stanley G. Hutton

Abstract An analysis of nonlinear vibrations of an elastically-constrained rotating disk is developed. The equations of motion, which are two coupled nonlinear partial differential equations corresponding to the transverse force equilibrium and to the deformation compatibility, are first developed by using von Karman thin plate theory. Then the stress function is analytically solved from the compatibility equation by assuming a multi-mode transverse displacement field. Galerkin’s method is applied to transform the force equilibrium equation into a set of coupled nonlinear ordinary differential equations in terms of time functions. Finally, numerical integration is used to solve the time governing equations, and the effects of nonlinearity on the vibrations of a rotating disk are discussed.


2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Ramin M. H. Khorasany ◽  
Stanley G. Hutton

Analysis of the linear vibration characteristics of unconstrained rotating isotropic thin disks leads to the important concept of “critical speeds.” These critical rotational speeds are of interest because they correspond to the situation where a natural frequency of the rotating disk, as measured by a stationary observer, is zero. Such speeds correspond physically to the speeds at which a traveling circumferential wave, of shape corresponding to the mode shape of the natural frequency being considered, travel around the disk in the absence of applied forces. At such speeds, according to linear theory, the blade may respond as a space fixed stationary wave and an applied space fixed dc force may induce a resonant condition in the disk response. Thus, in general, linear theory predicts that for rotating disks, with low levels of damping, large responses may be encountered in the region of the critical speeds due to the application of constant space fixed forces. However, large response invalidates the predictions of linear theory which has neglected the nonlinear stiffness produced by the effect of in-plane forces induced by large displacements. In the present paper, experimental studies were conducted in order to measure the frequency response characteristics of rotating disks both in an idling mode as well as when subjected to a space fixed lateral force. The applied lateral force (produced by an air jet) was such as to produce displacements large enough that non linear geometric effects were important in determining the disk frequencies. Experiments were conducted on thin annular disks of different thickness with the inner radius clamped to the driving arbor and the outer radius free. The results of these experiments are presented with an emphasis on recording the effects of geometric nonlinearities on lateral frequency response. In a companion paper (Khorasany and Hutton, 2010, “Vibration Characteristics of Rotating Thin Disks—Part II: Analytical Predictions,” ASME J. Mech., 79(4), p. 041007), analytical predictions of such disk behavior are presented and compared with the experimental results obtained in this study. The experimental results show that in the case where significant disk displacements are induced by a lateral force, the frequency characteristics are significantly influenced by the magnitude of forced displacements.


2000 ◽  
Author(s):  
Albert C. J. Luo ◽  
Chin An Tan

Abstract The resonant conditions for traveling waves in rotating disks are derived. The nonlinear resonant spectrum of a rotating disk is computed from the resonant conditions. Such a resonant spectrum is useful for the disk drive industry to determine the range of operational rotation speed. The resonant wave motions for linear and nonlinear, rotating disks are simulated numerically for a 3.5-inch diameter computer memory disk.


Sign in / Sign up

Export Citation Format

Share Document