A Hybrid Particle Filter for Dynamic Thermal Characterization of Metallic Micro- and Nanowires Using the 3ω Method

Author(s):  
Josef Cepak ◽  
Denis Myasishchev ◽  
Jordan M. Berg ◽  
Mark Holtz
2005 ◽  
Vol 44 (6A) ◽  
pp. 4084-4087 ◽  
Author(s):  
Takashi Kihara ◽  
Toshihiro Harada ◽  
Nobuyoshi Koshida

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 776 ◽  
Author(s):  
Bogdan F. Spiridon ◽  
Peter H. Griffin ◽  
John C. Jarman ◽  
Yingjun Liu ◽  
Tongtong Zhu ◽  
...  

This study focuses on the thermal characterization of porous gallium nitride (GaN) usingan extended 3ω method. Porous semiconductor materials provide a solution to the need for on-chipthermal insulation, a fundamental requirement for low-power, high-speed and high-accuracythermal sensors. Thermal insulation is especially important in GaN devices, due to the intrinsicallyhigh thermal conductivity of the material. The results show one order of magnitude reduction inthermal conductivity, from 130 W/mK to 10 W/mK, in line with theoretical predictions for porousmaterials. This achievement is encouraging in the quest for integrating sensors with opto-, powerandRF-electronics on a single GaN chip.


2004 ◽  
Author(s):  
Takashi Kihara ◽  
Toshihiro Harada ◽  
Nobuyoshi Koshida

Author(s):  
Dong-Wook Oh ◽  
Young Kim ◽  
Jun Seok Choi ◽  
Ook Joong Kim ◽  
Kong Hoon Lee

Polymer composites having comparable thermal conductivity to stainless steel at room temperature are commercially available nowadays. Metal or carbon fiber and particles are added to base polymers to enhance mechanical and thermal performance. However for polymer composites having high additive concentration, characterizing mechanical and thermal properties of the composite may be a challenging problem due to an-isotropic natural and non-homogeneity. In this paper, a novel thermal property measurement method based on the 3-omega (3ω) is proposed for thermal analysis of polymer composites. Sensitivity and feasible limit of the 3ω method with “boundary mismatch assumption” is analyzed for measurement of polymer composites having broad range of thermal conductivity.


1999 ◽  
Vol 6 (1) ◽  
pp. 101-108 ◽  
Author(s):  
E. Delacre ◽  
D. Defer ◽  
E. Antczak ◽  
B. Duthoit

2005 ◽  
Vol 125 ◽  
pp. 177-180
Author(s):  
T. Lopez ◽  
M. Picquart ◽  
G. Aguirre ◽  
Y. Freile ◽  
D. H. Aguilar ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


Sign in / Sign up

Export Citation Format

Share Document