Equivalency of Stability Transitions Between the SDS (Spectral Delay Space) and DS (Delay Space)

Author(s):  
Qingbin Gao ◽  
Umut Zalluhoglu ◽  
Nejat Olgac

It has been shown that the stability of LTI time-delayed systems with respect to the delays can be analyzed in two equivalent domains: (i) delay space (DS) and (ii) spectral delay space (SDS). Considering a broad class of linear time-invariant time delay systems with multiple delays, the equivalency of the stability transitions along the transition boundaries is studied in both spaces. For this we follow two corresponding radial lines in DS and SDS, and prove for the first time in literature that they are equivalent. This property enables us to extract local stability transition features within the SDS without going back to the DS. The main advantage of remaining in SDS is that, one can avoid a non-linear transition from kernel hypercurves to offspring hypercurves in DS. Instead the potential stability switching curves in SDS are generated simply by stacking a finite dimensional cube called the building block (BB) along the axes. A case study is presented within the report to visualize this property.

Author(s):  
Ryan R. Jenkins ◽  
Nejat Olgac

The dynamics we treat here is a very special and degenerate class of linear time-invariant time-delayed systems (LTI-TDS) with commensurate delays, which exhibit a double imaginary root for a particular value of the delay. The stability behavior of the system within the immediate proximity of this parametric setting which creates the degenerate dynamics is investigated. Several recent investigations also handled this class of systems from the perspective of calculus of variations. We approach the same problem from a different angle, using a recent paradigm called Cluster Treatment of Characteristic Roots (CTCR). We convert one of the parameters in the system into a variable and perturb it around the degenerate point of interest, while simultaneously varying the delay. Clearly, only a particular selection of this arbitrary parameter and the delay enforce the degeneracy. All other adjacent points would be free of the mentioned degeneracy, and therefore can be handled with the CTCR paradigm. Analysis then reveals that the parametrically limiting stability behavior of the dynamics can be extracted by simply using CTCR. The results are shown to be very much aligned with the other investigations on the problem. Simplicity and numerical speed of CTCR may be considered as practical advantages in analyzing such systems. This approach also exhibits the capabilities of CTCR in handling these degenerate cases contrary to the convictions in earlier reports. An example case study is provided to demonstrate these features.


Author(s):  
Qingbin Gao ◽  
Zhenyu Zhang ◽  
Chifu Yang

This paper provides new results for a newly introduced control scheme, Sign Inverting Control (SIC), for linear time-invariant multiple time delay systems (LTI-MTDS). SIC suggests the inversion of the control polarity for delayed systems and it functions with one single requirement that the union of the control schemes provides a larger operating region in the domain of the delays than each of its components does. To meet this need, we propose a new method to characterize the potential stability-switching hypersurfaces for SIC applied systems. The acquisition of these hypersurfaces is a prerequisite for the description of the overall stability map. The new results in this paper reveal the relationship between the hypersurfaces of the SIC applied system and the original nominal system. As a result, the procurement of the hypersurfaces and stability map of the SIC applied system has been facilitated. Several illustrative example case studies are presented.


Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A practical stability analysis, the Direct Method, for linear time invariant, time delayed systems (LTI-TDS) is revisited in this work considering the degenerate system dynamics. The principal strengths and enabling novelties of the method are reviewed along with its structured steps involved for assessing the stability. Uncommon in the literature, the Direct Method can handle large dimensional systems (e.g. larger than 2) very comfortably, it returns an explicit formula for the exact stability posture of the system for a given time delay, as such it reveals the possible detached stability pockets throughout the time delay axis. Both retarded and neutral classes of LTI-TDS are considered in this work. The main contribution here is to demonstrate the ability of the Direct Method in tackling degenerate cases. Along with the analytical arguments, example case studies are provided for a group of degeneracies. It is shown that the new method is capable of resolving them without any difficulty.


2003 ◽  
Vol 125 (2) ◽  
pp. 194-201 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A recent stability analysis, the Direct Method, for linear time invariant, time delayed systems (LTI-TDS) is revisited in this work considering the degenerate system dynamics. The principal strengths and enabling novelties of the method are reviewed along with its structured steps involved for assessing the stability. Uncommon in the literature, the Direct Method can handle large dimensional systems (e.g., larger than two) very comfortably. It returns an explicit formula for the exact stability posture of the system for a given time delay, as such it reveals the possible detached stability pockets throughout the time delay axis. Both retarded and neutral classes of LTI-TDS are considered in this work. The main contribution here is to demonstrate the ability of the Direct Method in tackling degenerate cases. Along with the analytical arguments, example case studies are provided for a group of degeneracies. It is shown that the new method is capable of resolving them without any difficulty.


2006 ◽  
Vol 129 (3) ◽  
pp. 245-251 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A novel treatment for the stability of linear time invariant (LTI) systems with rationally independent multiple time delays is presented in this paper. The independence of delays makes the problem much more challenging compared to systems with commensurate time delays (where the delays have rational relations). We uncover some wonderful features for such systems. For instance, all the imaginary characteristic roots of these systems can be found exhaustively along a set of surfaces in the domain of the delays. They are called the “kernel” surfaces (curves for two-delay cases), and it is proven that the number of the kernel surfaces is manageably small and bounded. All possible time delay combinations, which yield an imaginary characteristic root, lie either on this kernel or its infinitely many “offspring” surfaces. Another hidden feature is that the root tendencies along these surfaces exhibit an invariance property. From these outstanding characteristics an efficient, exact, and exhaustive methodology results for the stability assessment. As an added uniqueness of this method, the systems under consideration do not have to be stable for zero delays. Several example case studies are presented, which are prohibitively difficult, if not impossible to solve using any other peer methodology known to the authors.


Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A novel treatment for the stability of a class of linear time invariant (LTI) systems with rationally independent multiple time delays using the Direct Method (DM) is studied. Since they appear in many practical applications in the systems and control community, this class of dynamics has attracted considerable interest. The stability analysis is very complex because of the infinite dimensional nature (even for single delay) of the dynamics and furthermore the multiplicity of these delays. The stability problem is much more challenging compared to the TDS with commensurate time delays (where time delays have rational relations). It is shown in an earlier publication of the authors that the DM brings a unique, exact and structured methodology for the stability analysis of commensurate time delayed cases. The transition from the commensurate time delays to multiple delay case motivates our study. It is shown that the DM reveals all possible stability regions in the space of multiple time delays. The systems that are considered do not have to possess stable behavior for zero delays. We present a numerical example on a system, which is considered “prohibitively difficult” in the literature, just to exhibit the strengths of the new procedure.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 386
Author(s):  
Yuxin Wang ◽  
Huafei Sun ◽  
Yueqi Cao ◽  
Shiqiang Zhang

This paper extends the former approaches to describe the stability of n-dimensional linear time-invariant systems via the torsion τ ( t ) of the state trajectory. For a system r ˙ ( t ) = A r ( t ) where A is invertible, we show that (1) if there exists a measurable set E 1 with positive Lebesgue measure, such that r ( 0 ) ∈ E 1 implies that lim t → + ∞ τ ( t ) ≠ 0 or lim t → + ∞ τ ( t ) does not exist, then the zero solution of the system is stable; (2) if there exists a measurable set E 2 with positive Lebesgue measure, such that r ( 0 ) ∈ E 2 implies that lim t → + ∞ τ ( t ) = + ∞ , then the zero solution of the system is asymptotically stable. Furthermore, we establish a relationship between the ith curvature ( i = 1 , 2 , ⋯ ) of the trajectory and the stability of the zero solution when A is similar to a real diagonal matrix.


Sign in / Sign up

Export Citation Format

Share Document