Steerable Needle Trajectory Following in the Lung: Torsional Deadband Compensation and Full Pose Estimation With 5DOF Feedback for Needles Passing Through Flexible Endoscopes

Author(s):  
Tayfun Efe Ertop ◽  
Maxwell Emerson ◽  
Margaret Rox ◽  
Josephine Granna ◽  
Robert Webster ◽  
...  

Abstract Bronchoscopic diagnosis and intervention in the lung is a new frontier for steerable needles, where they have the potential to enable minimally invasive, accurate access to small nodules that cannot be reliably accessed today. However, the curved, flexible bronchoscope requires a much longer needle than prior work has considered, with complex interactions between the needle and bronchoscope channel, introducing new challenges in steerable needle control. In particular, friction between the working channel and needle causes torsional windup along the bronchoscope, the effects of which cannot be directly measured at the tip of thin needles embedded with 5 degree-of-freedom magnetic tracking coils. To compensate for these effects, we propose a new torsional deadband-aware Extended Kalman Filter to estimate the full needle tip pose including the axial angle, which defines its steering direction. We use the Kalman Filter estimates with an established sliding mode controller to steer along desired trajectories in lung tissue. We demonstrate that this simple torsional deadband model is sufficient to account for the complex interactions between the needle and endoscope channel for control purposes. We measure mean final targeting error of 1.36 mm in phantom tissue and 1.84 mm in ex-vivo porcine lung, with mean trajectory following error of 1.28 mm and 1.10 mm, respectively.

2017 ◽  
Vol 02 (01) ◽  
pp. 1750001 ◽  
Author(s):  
Philip J. Swaney ◽  
Arthur W. Mahoney ◽  
Bryan I. Hartley ◽  
Andria A. Remirez ◽  
Erik Lamers ◽  
...  

Lung cancer is the most deadly form of cancer in part because of the challenges associated with accessing nodules for diagnosis and therapy. Transoral access is preferred to percutaneous access since it has a lower risk of lung collapse, yet many sites are currently unreachable transorally due to limitations with current bronchoscopic instruments. Toward this end, we present a new robotic system for image-guided trans-bronchoscopic lung access. The system uses a bronchoscope to navigate in the airway and bronchial tubes to a site near the desired target, a concentric tube robot to move through the bronchial wall and aim at the target, and a bevel-tip steerable needle with magnetic tracking to maneuver through lung tissue to the target under closed-loop control. In this work, we illustrate the workflow of our system and show accurate targeting in phantom experiments. Ex vivo porcine lung experiments show that our steerable needle can be tuned to achieve appreciable curvature in lung tissue. Lastly, we present targeting results with our system using two scenarios based on patient cases. In these experiments, phantoms were created from patient-specific computed tomography information and our system was used to target the locations of suspicious nodules, illustrating the ability of our system to reach sites that are traditionally inaccessible transorally.


2021 ◽  
Author(s):  
Shan Jiang ◽  
Bowen Jiang ◽  
Peina Fang ◽  
Zhiyong Yang

Abstract Needle insertion is a common procedure in percutaneous puncture. A motion planner for a steerable needle that considers the risk level of the path in anatomical environment and the actual deflection of clinical needle is necessary. A novel preoperative motion planner for a steerable needle controlled by robot is proposed. Our method utilizes sampling-based planner to compute candidate path in the reachable region, the path solutions are optimized by calculating the cost of a path based on a cost map. The cost-map, which is built based on repulsive field theory from CT image, encodes the information of the obstacle locations and the criticality of the anatomical environment. The empirical formula that can predict needle trajectory is obtained by insertion experiments. Experiments shown that positioning error in gelatin phantom under the guidance of our planner is less than 1.1mm. Comparing with the straight-line insertion method, the positioning error was reduced by 80%. The results indicate that the motion planner has the potential to provide effective guidance for robot-assisted puncture surgery while enhancing the position precision and patient safety.


Mechatronics ◽  
2017 ◽  
Vol 44 ◽  
pp. 42-51 ◽  
Author(s):  
Mohammad Sheikh Sofla ◽  
Mohammad Zareinejad ◽  
Mohsen Parsa ◽  
Hassan Sheibani

Author(s):  
Daniel E Levin ◽  
Arabinda Mandal ◽  
Mark A Fleming ◽  
Katherine H Bae ◽  
Brielle Gerry ◽  
...  

Abstract The role of enteric neurons in driving intestinal peristalsis has been known for over a century. However, in recent decades, scientists have begun to unravel additional complex interactions between this nerve plexus and other cell populations in the intestine. Investigations into these potential interactions is complicated by a paucity of tractable models of these cellular relationships. Here, we describe a novel technique for ex vivo coculture of enteroids, so called “mini-guts,” in juxtaposition to the longitudinal muscle myenteric plexus (LMMP). Key to this system, we developed a LMMP culture media that: 1) allows the LMMP to maintain ex vivo peristalsis for 2 weeks along with proliferation of neurons, glia, smooth muscle and fibroblast cells, and 2) supports the proliferation and differentiation of the intestinal stem cells into enteroids complete with epithelial enterocytes, Paneth cells, goblet cells and enteroendocrine cells. Importantly, this technique identifies a culture condition that supports both the metabolic needs of intestinal epithelium as well as neuronal elements, demonstrating the feasibility of maintaining these two populations in a single culture system. This sets the stage for experiments to better define the regulatory interactions of these two important intestinal cell populations.


2018 ◽  
Author(s):  
Dongmeia He ◽  
Enguang Hou ◽  
Xin Qiao ◽  
Guangmin Liu

2014 ◽  
Vol 22 (8) ◽  
pp. 2088-2095 ◽  
Author(s):  
邓永停 DENG Yong-ting ◽  
李洪文 LI Hong-wen ◽  
王建立 WANG Jian-li ◽  
贾建禄 JIA Jian-lu

Sign in / Sign up

Export Citation Format

Share Document