Thermal Characterization of High Temperature Inorganic Phase Change Materials for Thermal Energy Storage Applications

Author(s):  
Jamie Trahan ◽  
Sarada Kuravi ◽  
D. Yogi Goswami ◽  
Muhammad Rahman ◽  
Elias Stefanakos

As the importance of latent heat thermal energy storage increases for utility scale concentrating solar power (CSP) plants, there lies a need to characterize the thermal properties and melting behavior of phase change materials (PCMs) that are low in cost and high in energy density. In this paper, the results of an investigation of the melting temperature and latent heat of two binary high temperature salt eutectics are presented. Melting point and latent heat are analyzed for a chloride eutectic and carbonate eutectic using simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analsysis (TGA). High purity materials were used and the handling procedure was carefully controlled to accommodate the hygroscopic nature of the chloride eutectic. The DSC analysis gives the values of thermal properties of the eutectics, which are compared with the calculated (expected/published) values. The thermal stability of the eutectics is also examined by repeated thermal cycling in a DSC and is reported in the paper along with a cost analysis of the salt materials.

2021 ◽  
Vol 11 (13) ◽  
pp. 6234
Author(s):  
Ciprian Neagoe ◽  
Ioan Albert Tudor ◽  
Cristina Florentina Ciobota ◽  
Cristian Bogdanescu ◽  
Paul Stanciu ◽  
...  

Microencapsulation of sodium nitrate (NaNO3) as phase change material for high temperature thermal energy storage aims to reduce costs related to metal corrosion in storage tanks. The goal of this work was to test in a prototype thermal energy storage tank (16.7 L internal volume) the thermal properties of NaNO3 microencapsulated in zinc oxide shells, and estimate the potential of NaNO3–ZnO microcapsules for thermal storage applications. A fast and scalable microencapsulation procedure was developed, a flow calorimetry method was adapted, and a template document created to perform tank thermal transfer simulation by the finite element method (FEM) was set in Microsoft Excel. Differential scanning calorimetry (DSC) and transient plane source (TPS) methods were used to measure, in small samples, the temperature dependency of melting/solidification heat, specific heat, and thermal conductivity of the NaNO3–ZnO microcapsules. Scanning electron microscopy (SEM) and chemical analysis demonstrated the stability of microcapsules over multiple tank charge–discharge cycles. The energy stored as latent heat is available for a temperature interval from 303 to 285 °C, corresponding to onset–offset for NaNO3 solidification. Charge–self-discharge experiments on the pilot tank showed that the amount of thermal energy stored in this interval largely corresponds to the NaNO3 content of the microcapsules; the high temperature energy density of microcapsules is estimated in the range from 145 to 179 MJ/m3. Comparison between real tank experiments and FEM simulations demonstrated that DSC and TPS laboratory measurements on microcapsule thermal properties may reliably be used to design applications for thermal energy storage.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3821
Author(s):  
Kassianne Tofani ◽  
Saeed Tiari

Latent heat thermal energy storage systems (LHTES) are useful for solar energy storage and many other applications, but there is an issue with phase change materials (PCMs) having low thermal conductivity. This can be enhanced with fins, metal foam, heat pipes, multiple PCMs, and nanoparticles (NPs). This paper reviews nano-enhanced PCM (NePCM) alone and with additional enhancements. Low, middle, and high temperature PCM are classified, and the achievements and limitations of works are assessed. The review is categorized based upon enhancements: solely NPs, NPs and fins, NPs and heat pipes, NPs with highly conductive porous materials, NPs and multiple PCMs, and nano-encapsulated PCMs. Both experimental and numerical methods are considered, focusing on how well NPs enhanced the system. Generally, NPs have been proven to enhance PCM, with some types more effective than others. Middle and high temperatures are lacking compared to low temperature, as well as combined enhancement studies. Al2O3, copper, and carbon are some of the most studied NP materials, and paraffin PCM is the most common by far. Some studies found NPs to be insignificant in comparison to other enhancements, but many others found them to be beneficial. This article also suggests future work for NePCM and LHTES systems.


2018 ◽  
Vol 217 ◽  
pp. 212-220 ◽  
Author(s):  
Guanghui Leng ◽  
Geng Qiao ◽  
Zhu Jiang ◽  
Guizhi Xu ◽  
Yue Qin ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6176 ◽  
Author(s):  
Hamidreza Behi ◽  
Mohammadreza Behi ◽  
Ali Ghanbarpour ◽  
Danial Karimi ◽  
Aryan Azad ◽  
...  

Usage of phase change materials’ (PCMs) latent heat has been investigated as a promising method for thermal energy storage applications. However, one of the most common disadvantages of using latent heat thermal energy storage (LHTES) is the low thermal conductivity of PCMs. This issue affects the rate of energy storage (charging/discharging) in PCMs. Many researchers have proposed different methods to cope with this problem in thermal energy storage. In this paper, a tubular heat pipe as a super heat conductor to increase the charging/discharging rate was investigated. The temperature of PCM, liquid fraction observations, and charging and discharging rates are reported. Heat pipe effectiveness was defined and used to quantify the relative performance of heat pipe-assisted PCM storage systems. Both experimental and numerical investigations were performed to determine the efficiency of the system in thermal storage enhancement. The proposed system in the charging/discharging process significantly improved the energy transfer between a water bath and the PCM in the working temperature range of 50 °C to 70 °C.


Sign in / Sign up

Export Citation Format

Share Document