An Evaluation of Containment Materials for High Temperature Metal Thermal Storage

Author(s):  
David Curran ◽  
Fletcher Miller ◽  
Russell Carrington ◽  
Arlon Hunt

Concentrated solar power (CSP) must decrease its levelized cost of electricity (LCOE) below the DOE SunShot program targets of 6 ¢/kWhe and improve its reliability to enable widespread adoption. Two features of CSP that will decrease LCOE and improve reliability are higher operating temperatures for the power cycle and thermal energy storage (TES). Thermaphase Energy and San Diego State University are developing the Liquid Metal Thermal Energy Storage System (LiMTESS), an innovative TES system based on phase change in Al-Si and Mg-Si alloys that stores thermal energy produced by gas-cooled solar receivers at temperatures above 800 C. Proper containment for Al-Si and Mg-Si alloys is critical for LiMTESS commercialization. Any containment vessel must be simultaneously compatible with the molten alloys and high-temperature oxidizing gases (e.g., air), facilitate heat transfer between the alloys and high-temperature oxidizing gases, and accommodate internal stresses associated with TES operation. A ceramic-metallic composite material (TCON) and select ceramics such as siliconized silicon carbide (SiSiC) and alumina initially showed promise in meeting these requirements. A series of thermal cycling tests were performed to check the integrity of the containment vessels. TCON produced macroscopic nodules during the thermal cycling that eliminated it from further consideration. On the other hand, SiSiC performed well when exposed to high-temperature, AlSi36, MgSi56, and air. To further evaluate SiSiC as a containment material, the research team conducted multiple thermal cycles with variable temperature profiles, duration of test, and gas environments. Before and after each thermal cycle, the team conducted a mass analysis and performed SEM and EDS analysis on prepared, treated samples. The results confirm SiSiC is a good candidate for a containment vessel. At this point the research team is evaluating Morcoset, a silicon carbide-based mortar, for creating an air-tight seal for SiSiC. The research team assessed the quality of the seal by using the mortar to seal MgSi56 and conducted thermal cycling tests to compare the mass loss of the system due to Mg vapor escaping the system to that of a controlled system with no alloys sealed. Results confirmed that Mg vapor did not exit the system. There is still more work to do, but preliminary results indicate the Morcoset + SiSiC system is a good containment system for AlSi36/MgSi56. In this paper the results of the long-duration thermal cycling tests as well as electron micrographs of the containment seals and phase change materials are presented.

2021 ◽  
Vol 11 (13) ◽  
pp. 6234
Author(s):  
Ciprian Neagoe ◽  
Ioan Albert Tudor ◽  
Cristina Florentina Ciobota ◽  
Cristian Bogdanescu ◽  
Paul Stanciu ◽  
...  

Microencapsulation of sodium nitrate (NaNO3) as phase change material for high temperature thermal energy storage aims to reduce costs related to metal corrosion in storage tanks. The goal of this work was to test in a prototype thermal energy storage tank (16.7 L internal volume) the thermal properties of NaNO3 microencapsulated in zinc oxide shells, and estimate the potential of NaNO3–ZnO microcapsules for thermal storage applications. A fast and scalable microencapsulation procedure was developed, a flow calorimetry method was adapted, and a template document created to perform tank thermal transfer simulation by the finite element method (FEM) was set in Microsoft Excel. Differential scanning calorimetry (DSC) and transient plane source (TPS) methods were used to measure, in small samples, the temperature dependency of melting/solidification heat, specific heat, and thermal conductivity of the NaNO3–ZnO microcapsules. Scanning electron microscopy (SEM) and chemical analysis demonstrated the stability of microcapsules over multiple tank charge–discharge cycles. The energy stored as latent heat is available for a temperature interval from 303 to 285 °C, corresponding to onset–offset for NaNO3 solidification. Charge–self-discharge experiments on the pilot tank showed that the amount of thermal energy stored in this interval largely corresponds to the NaNO3 content of the microcapsules; the high temperature energy density of microcapsules is estimated in the range from 145 to 179 MJ/m3. Comparison between real tank experiments and FEM simulations demonstrated that DSC and TPS laboratory measurements on microcapsule thermal properties may reliably be used to design applications for thermal energy storage.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Takahiro Nomura ◽  
Chunyu Zhu ◽  
Nan Sheng ◽  
Genki Saito ◽  
Tomohiro Akiyama

2018 ◽  
Vol 217 ◽  
pp. 212-220 ◽  
Author(s):  
Guanghui Leng ◽  
Geng Qiao ◽  
Zhu Jiang ◽  
Guizhi Xu ◽  
Yue Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document