Tube Banks Heat Transfer Enhancement Using Conical Fins

Author(s):  
Ignacio Carvajal-Mariscal ◽  
Florencio Sanchez-Silva ◽  
Georgiy Polupan

In this work the heat transfer and pressure drop experimental results obtained in a two step finned tube bank with conical fins are presented. The tube bank had an equilateral triangle array composed of nine finned tubes with conical fins inclined 45 degrees in respect with the tube axis. The heat exchange external area of a single tube is approximately 0.07 m2. All necessary thermal parameters, inlet/outlet temperatures, mass flows, for the heat balance in the tube bank were determined for different air velocities, Re = 3400–18400, and one constant thermal charge provided by a hot water flow with a temperature of 80 °C. As a result, the correlations for the heat transfer and pressure drop calculation were obtained. The experimental results were compared against the analytical results for a tube bank with annular fins with the same heat exchange area. It was found that the proposed tube bank using finned tubes with conical fins shows an increment of heat transfer up to 58%.

1981 ◽  
Vol 103 (4) ◽  
pp. 705-714 ◽  
Author(s):  
J. C. Biery

A new method is presented to predict heat transfer coefficients for gas flow normal to smooth and finned tube tanks with triangular pitch. A transformation from the actual tube bank to an equivalent equilateral triangular pitch infinite smooth tube bank (ETP-I-STB) is made. A function of Ch(Ch = NSTNPR2/3NRe0.4) versus (Xt D0)Δ, ratio of transverse pitch to tube diameter for the ETP-I-STB, was developed. The Ch for the equivalent ETP-I-STP then applies to the actual tube bank. The method works with circular finned tubes, smooth tubes, continuous finned tubes, and segmented finned tubes with any triangular pitch. Also, fair predictions were made for in-line tubes with high Reynolds numbers.


Author(s):  
K. Kawaguchi ◽  
K. Okui ◽  
Y. Hasegawa

In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of the global warming and the shortage of petroleum resources. For example in the power generation field, as the thermal power generation occupied 60% of the power generation demand, the improvement of the thermal efficiency is required considerably. This paper described the heat transfer and pressure drop characteristics of the finned tube banks used for the heat exchanger in the thermal power generation. The characteristics were clarified by testing the serrated finned tubes banks for improvement of higher heat transfer and the conventional spiral finned tube banks under the same test conditions. The equations to predict heat transfer coefficient and pressure drop which are necessary on design of the heat exchanger were proposed.


2003 ◽  
Vol 2003.40 (0) ◽  
pp. 31-32
Author(s):  
Kiyoshi KAWAGUCHI ◽  
Kenichi OKUI ◽  
Takaharu KASHI ◽  
Shinya YASUDA ◽  
Masayoshi YAMAGUCHI

2021 ◽  
pp. 10295-10338
Author(s):  
Yahya Yaser Shanyour AL-Salman, Ali Sabri Abbas

The thermal and flow performance of the circular annular finned tube heat exchanger with perforated fins were investigated numerically using ANSYS Fluent 2020 software, RNG k-e model with enhanced wall treatment, global performance criterion was introduced as evaluation factor of the heat exchanger performance, the parameters to be investigated were the number of holes, size of hole, tilt angle of the finned tube, fin height and spacing between fins. Agreement was found with literature that the tilt angle causes increase in heat transfer rate and increase in the pressure drop as well, but the change the global performance criterion as function to tilt angle depends on the fin heights, for higher fin heights the effective change of the pressure drop become greater than the increase in the heat transfer rate and the contrast occur in the cases of smaller fin heights, we have found that the perforation in tilted annular circular finned tubes causes an increase in the heat transfer rate and an enhancement in the total heat exchanger performance, increasing the number of holes will enhance the performance of the heat exchanger and the spacing increase reduces the heat exchanger performance.


Sign in / Sign up

Export Citation Format

Share Document