Volume 3: Turbo Expo 2004
Latest Publications


TOTAL DOCUMENTS

95
(FIVE YEARS 0)

H-INDEX

12
(FIVE YEARS 0)

Published By ASMEDC

0791841685

Author(s):  
D. G. Knost ◽  
K. A. Thole

In gas turbine development, the direction has been towards higher turbine inlet temperatures to increase the work output and thermal efficiency. This extreme environment can significantly impact component life. One means of preventing component burnout in the turbine is to effectively use film-cooling whereby coolant is extracted from the compressor and injected through component surfaces. One such surface is the endwall of the first stage nozzle guide vane. This paper presents measurements of two endwall film-cooling hole patterns combined with cooling from a flush slot that simulates leakage flow between the combustor and turbine sections. Adiabatic effectiveness measurements showed the slot flow adequately cooled portions of the endwall. Measurements also showed two very difficult regions to cool including the leading edge and pressure side-endwall junction. As the momentum flux ratios were increased for the film-cooling jets in the stagnation region, the coolant was shown to impact the vane and wash down onto the endwall surface. Along the pressure side of the vane in the upstream portion of the passage, the jets were shown to separate from the surface rather than penetrate to the pressure surface. In the downstream portion of the passage, the jets along the pressure side of the vane were shown to impact the vane thereby eliminating any uncooled regions at the junction. The measurements were also combined with computations to show the importance of considering the trajectory of the flow in the near-wall region, which can be highly influenced by slot leakage flows.


Author(s):  
A. K. Saha ◽  
Sumanta Acharya

The flow and heat transfer in ribbed coolant passages of aspect ratios (AR) of 1:1, 4:1, and 1:4 are numerically studied through the solution of the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations. The ribs are oriented normal to the flow and arranged in a staggered configuration on the leading and trailing surfaces. The URANS procedure can resolve large-scale bulk unsteadiness, and utilizes a two equation k-ε model for the turbulent stresses. Both Coriolis and centrifugal buoyancy effects are included in the simulations. The computations are carried out for a fixed Reynolds number of 25000 and density ratio of 0.13 while the Rotation number has been varied between 0.12–0.50. The average duct heat transfer is the highest for the 4:1 AR case. For this case, the secondary flow structures consist of multiple roll cells that direct flow both to the trailing and leading surfaces. The 1:4 AR duct shows flow reversal along the leading surface at high rotation numbers with multiple rolls in the secondary flow structures near the leading wall. For this AR, the potential for conduction-limited heat transfer along the leading surface is identified. At high rotation number, both the 1:1 and 4:1 AR cases exhibit loss of axial periodicity over one inter-rib module. The friction factor reveals an increase with the rotation number for all aspect ratio ducts, and shows a sudden jump in its value at a critical rotation number because of either loss of spatial periodicity or the onset of backflow.


Author(s):  
Carlo Carcasci ◽  
Luca Innocenti ◽  
Marco Surace

Heat transfer coefficients have often been experimentally measured, taking into account Nusselt number as a function of Reynolds and Prandtl number. Most experimenters spend their effort to control turbulence level, set it to different values, or keep it unchanged during the tests, as it’s not easy to predict how its initial level may change final results. The aim of this work is to add some comprehension on how different turbulence incoming levels may affect heat transfer measurements, and when it’s possible or not to neglect such effects. Experimental setup features different duct geometries, and thermocromic liquid crystals coupled with hot-wire anemometers are used as main measurement techniques. Tests were performed for Reynolds number from 10000 to 50000 and turbulence level from 3% to 12%. Several turbulence manipulators were adopted, including aluminum foams and multi-perforated plates, and results show some interesting dependences of heat transfer from both turbulence level and grid features.


Author(s):  
S. Acharya ◽  
P. Agarwal ◽  
D. E. Nikitopoulos

The paper presents an experimental study of heat/mass transfer coefficient in 4:1 aspect ratio rectangular channel with smooth or ribbed walls for Reynolds number in the range of 5,000 to 30,000, rotation numbers in the range of 0–0.12 and for two different orientations of the test-section (90-degree and 45-degree relative to the plane of rotation). Such passages are encountered close to the trailing sections of the turbine blade. Inline normal tips (e/Dh = 0.15625 and p/e = 11.2) are used and placed on the leading and the trailing sides. The experiments are conducted in a rotating two-pass coolant channel facility using the naphthalene sublimation technique. It is observed that for the 45-degree orientation of the test-section, all the walls show an increase in the heat transfer with rotation as opposed to the 90-degree orientation where the stabilized wall shows reduction and the destabilized wall shows enhancement. The spanwise mass transfer distributions in the smooth and the ribbed cases are also presented, and show significant variations in the spanwise direction for the smooth channel.


Author(s):  
G. Wagner ◽  
M. Kotulla ◽  
P. Ott ◽  
B. Weigand ◽  
J. von Wolfersdorf

The transient liquid crystal technique is nowadays widely used for measuring the heat transfer characteristics in gas turbine applications. Usually, the assumption is made that the wall of the test model can be treated as a flat and semi-infinite solid. This assumption is correct as long as the penetration depth of the heat compared to the thickness of the wall and to the radius of curvature is small. However, those two assumptions are not always respected for measurements near the leading edge of a blade. This paper presents a rigorous treatment of the curvature and finite wall thickness effects. The unsteady heat transfer for a hollow cylinder has been investigated analytically and a data reduction method taking into account curvature and finite wall thickness effects has been developed. Experimental tests made on hollow cylinder models have been evaluated using the new reduction method as well as the traditional semi-infinite flat plate approach and a third method that approximately accounts for curvature effects. It has been found that curvature and finite thickness of the wall have in some cases a significant influence on the obtained heat transfer coefficient. The parameters influencing the accuracy of the semi-infinite flat plate model and the approximate curvature correction are determined and the domains of validity are represented.


Author(s):  
Yaping Hu ◽  
Honghu Ji

The paper numerically investigates the influences of the blowing angle α of coolant flow on the cooling effectiveness of effusion cooling of a plate. Nine cases were studied which cover three blowing angles of α = 30°, 60°, 90° and for each angle three blowing ratios of M = 0.5, 1.0, 2.0 are calculated, respectively. The results show that with the increase of α the cooling effectiveness reduces for all the calculated cases. For the cases of α = 30° and 60° the distribution of cooling effectiveness η along the whole plate are very similar for any given blowing ratio, especially when M = 1.0 and 2.0. Whereas for the cases of α = 90°, the distributions of cooling effectiveness are quite different from other two blowing angles for a given blowing ratio, especially for M = 1.0 and in the trailing region of the plate. Although the cooling effectiveness of the cases with α = 90° for any given blowing ratio is the worst one among the three angles (α = 30°, 60°, and 90°) stated, its absolute value is still quite high comparing to the conventional film cooling.


Author(s):  
Huitao Yang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

The blade tip is one area that experiences high heat transfer due to the strong tip leakage flow. One of the common methods is to apply film cooling on tip to reduce the heat load. To get a better film cooling, different arrangements of film holes on the plane and squealer tips have been numerically studied with the Reynolds stress turbulence model and non-equilibrium wall function. The present study investigated three types of film-hole arrangements: 1) the camber arrangement: the film cooling holes are located on the mid-camber line of tips, 2) the upstream arrangement: the film holes are located upstream of the tip leakage flow and high heat transfer region, and 3) two rows arrangement: the camber and upstream arrangements are combined under the same amount of coolant. In addition, three different blowing ratios (M = 0.5, 1 and 1.5), are evaluated for film cooling effectiveness and heat transfer coefficient. The predicted heat transfer coefficients are in good agreement with the experimental data, but the film cooling effectiveness is over predicted on the blade tips.


Author(s):  
A. C. Smith ◽  
J. H. Hatchett ◽  
A. C. Nix ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

An experimental and numerical investigation was conducted to determine the film cooling effectiveness of a normal slot and angled slot under realistic engine Mach number conditions. Freestream Mach numbers of 0.65 and 1.3 were tested. For the normal slot, hot gas ingestion into the slot was observed at low blowing ratios (M < 0.25). At high blowing ratios (M > 0.6) the cooling film was observed to “lift off” from the surface. For the 30° angled slot, the data was found to collapse using the blowing ratio as a scaling parameter. Results from the current experiment were compared with the subsonic data previously published. For the angle slot, at supersonic freestream Mach number, the current experiment shows that at the same x/Ms, the film-cooling effectiveness increases by as much as 25% as compared to the subsonic case. The results of the experiment also show that at the same x/Ms, the film cooling effectiveness of the angle slot is considerably higher than the normal slot, at both subsonic and supersonic Mach numbers. The flow physics for the slot tests considered here are also described with computational fluid dynamic (CFD) simulations in the subsonic and supersonic regimes.


Author(s):  
M. Deinert ◽  
J. Hourmouziadis

This study gives a detailed experimental evaluation of film cooling characteristics in unsteady flow with a separation bubble. The research project is divided into two phases. In the first phase, which is presented here, only the variation of the velocity caused by upstream blades is simulated in the experiments while the free-stream turbulence intensity is retained at a constant low level. The experiments are carried out on a flat plate with superimposed pressure distribution typical of turbine blading. A contoured wall opposite the flat plate generates this pressure distribution with a strong adverse pressure gradient, which induces a separation bubble in the middle of the plate. The measurements are conducted in an open-circuit, low-speed, suction-type wind tunnel, which can generate periodically pulsating flow. The flat plate is 1000 mm in length and has a width of 400 mm. The cooling air enters the test section through a row of 7 cylindrical film-cooling holes with sharp edges and an inclination angle of 35 degrees. The film cooling holes, which are 8 mm in diameter and have a pitch to diameter ratio of 3:1, are located in the middle of the flat plate. The main objective is to investigate the influence of the separation bubble on the cooling air flow and different film cooling parameters under periodically unsteady flow conditions. Therefore, measurements of the flow velocity and temperature using hot and cold wire anemometry for different boundary conditions were carried out. The results show that the periodic changes of size and shape of the separation bubble in a film cooled flow field under unsteady flow conditions are still dominated by the superimposed periodically changing pressure distribution. The incoming cooling air influences the separation bubble in two ways. On the one hand, the separation bubble is displaced by the film cooling jet, which means that it is only present upstream of the air injection point and on the other hand the separation bubble is thicker directly in front of the incoming film cooling jet because of the superimposed pressure field upstream of the jet. The results of flow temperature measurements show a small low-temperature area upstream of the film cooling jet at the position of the separation bubble.


Author(s):  
Detlef Pape ◽  
Herve´ Jeanmart ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand

An experimental and numerical investigation of the pressure loss and the heat transfer in the bend region of a smooth two-pass cooling channel with a 180°-turn has been performed. The channels have a rectangular cross-section with a high aspect ratio of H/W = 4. The heat transfer has been measured using the transient liquid crystal method. For the investigations the Reynolds-number as well as the distance between the tip and the divider wall (tip distance) are varied. While the Reynolds number varies from 50’000 to 200’000 and its influence on the normalized pressure loss and heat transfer is found to be small, the variations of the tip distance from 0.5 up to 3.65 W produce quite different flow structures in the bend. The pressure loss over the bend thus shows a strong dependency on these variations.


Sign in / Sign up

Export Citation Format

Share Document