An Investigation of Heat Transfer and Pressure Drop Enhancement of Various Perforated Circular Finned Tubes at Different Tube Tilt Angles

2021 ◽  
pp. 10295-10338
Author(s):  
Yahya Yaser Shanyour AL-Salman, Ali Sabri Abbas

The thermal and flow performance of the circular annular finned tube heat exchanger with perforated fins were investigated numerically using ANSYS Fluent 2020 software, RNG k-e model with enhanced wall treatment, global performance criterion was introduced as evaluation factor of the heat exchanger performance, the parameters to be investigated were the number of holes, size of hole, tilt angle of the finned tube, fin height and spacing between fins. Agreement was found with literature that the tilt angle causes increase in heat transfer rate and increase in the pressure drop as well, but the change the global performance criterion as function to tilt angle depends on the fin heights, for higher fin heights the effective change of the pressure drop become greater than the increase in the heat transfer rate and the contrast occur in the cases of smaller fin heights, we have found that the perforation in tilted annular circular finned tubes causes an increase in the heat transfer rate and an enhancement in the total heat exchanger performance, increasing the number of holes will enhance the performance of the heat exchanger and the spacing increase reduces the heat exchanger performance.

2013 ◽  
Vol 388 ◽  
pp. 149-155 ◽  
Author(s):  
Mazlan Abdul Wahid ◽  
Ahmad Ali Gholami ◽  
H.A. Mohammed

In the present work, laminar cross flow forced convective heat transfer of nanofluid over tube banks with various geometry under constant wall temperature condition is investigated numerically. We used nanofluid instead of pure fluid ,as external cross flow, because of its potential to increase heat transfer of system. The effect of the nanofluid on the compact heat exchanger performance was studied and compared to that of a conventional fluid.The two-dimensional steady state Navier-Stokes equations and the energy equation governing laminar incompressible flow are solved using a Finite volume method for the case of flow across an in-line bundle of tube banks as commercial compact heat exchanger. The nanofluid used was alumina-water 4% and the performance was compared with water. In this paper, the effect of parameters such as various tube shapes ( flat, circle, elliptic), and heat transfer comparison between nanofluid and pure fluid is studied. Temperature profile, heat transfer coefficient and pressure profile were obtained from the simulations and the performance was discussed in terms of heat transfer rate and performance index. Results indicated enhanced performance in the use of a nanofluid, and slight penalty in pressure drop. The increase in Reynolds number caused an increase in the heat transfer rate and a decrease in the overall bulk temperature of the cold fluid. The results show that, for a given heat duty, a mas flow rate required of the nanofluid is lower than that of water causing lower pressure drop. Consequently, smaller equipment and less pumping power are required.


2015 ◽  
Vol 787 ◽  
pp. 72-76 ◽  
Author(s):  
V. Naveen Prabhu ◽  
M. Suresh

Nanofluids are fluids containing nanometer-sized particles of metals, oxides, carbides, nitrides, or nanotubes. They exhibit enhanced thermal performance when used in a heat exchanger as heat transfer fluids. Alumina (Al2O3) is the most commonly used nanoparticle due to its enhanced thermal conductivity. The work presented here, deals with numerical simulations performed in a tube-in-tube heat exchanger to study and compare flow characteristics and thermal performance of a tube-in-tube heat exchanger using water and Al2O3/water nanofluid. A local element-by-element analysis utilizing e-NTU method is employed for simulating the heat exchanger. Profiles of hot and cooling fluid temperatures, pressure drop, heat transfer rate along the length of the heat exchanger are studied. Results show that heat exchanger with nanofluid gives improved heat transfer rate when compared with water. However, the pressure drop is more, which puts a limit on the operating conditions.


SINERGI ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 51
Author(s):  
Sudiono Sudiono ◽  
Rita Sundari ◽  
Rini Anggraini

This preliminary investigation studied the effect of circular turbulator vortex generator on heat transfer rate and pressure drop in a circular channel countercurrent double pipe heat exchanger with water working fluid. Increasing the number of circular turbulator yielded increasing heat transfer rate and pressure drop. The problem generated when increased pressure drop occurred in relation to more energy consumption of the water pumping system. Therefore, optimization in circular turbulator number is necessary to minimize the pressure drop about distance length between circular turbulator, tube diameter and thickness, type of material and crystal lattice, as well as the geometrical shape of fluid passage (circular or square). This study applied PVC outer tube and copper alloy inner tube, as well as fiberglass circular turbulator. The optimum results showed that seven parts of circular turbulator increasing heat transfer rate by 30% and pressure drop by 80% compared to that passage in the absence of circular turbulator at cool water debit of 7 L/min.


Author(s):  
Muhammad Ansab Ali ◽  
Tariq S. Khan ◽  
Ebrahim Al Hajri

The quest to achieve higher heat transfer rate, smaller size and minimum pressure drop is a main area of focus in the design of heat exchangers. Plate heat exchangers are one of viable candidates to deliver higher heat duties but still have a drawback of higher pressure drop due to long restricted flow path. Motivated by demand of miniaturization and cost reduction, a novel design of tubular microchannel heat exchanger for single phase flow employing ammonia water mixture is proposed. Numerical simulation of unit fluid domain is conducted in ANSYS Fluent. Parametric study of the different flow geometries is evaluated in terms of Nusselt number and pressure drop. The salient features of the design include ultra-compact size with higher heat transfer rate and acceptable pressure drop.


Author(s):  
K. Kawaguchi ◽  
K. Okui ◽  
Y. Hasegawa

In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of the global warming and the shortage of petroleum resources. For example in the power generation field, as the thermal power generation occupied 60% of the power generation demand, the improvement of the thermal efficiency is required considerably. This paper described the heat transfer and pressure drop characteristics of the finned tube banks used for the heat exchanger in the thermal power generation. The characteristics were clarified by testing the serrated finned tubes banks for improvement of higher heat transfer and the conventional spiral finned tube banks under the same test conditions. The equations to predict heat transfer coefficient and pressure drop which are necessary on design of the heat exchanger were proposed.


2020 ◽  
Vol 9 (1) ◽  
pp. 1793-1798

A heat exchanger is a device intensively used for enhancing the transfer of heat energy between two or more working fluids at different temperature, which are in thermal contact. The optimal design and efficient operation of heat exchanger and heat transfer network are of a great significance in any of the process industry. The heat transfer efficiency depends on both design of heat exchanger and property of working fluid. From various types of heat exchanger, the double stacked shell and tube heat exchanger with straight tube and single pass is to be under study. Here the redesign of heat exchanger takes place with the key objectives of optimizing the pressure drop, optimizing the heat transfer rate and reducing the saddle support weight used for cooling purpose in brewery application. The design calculations are carried out using the Kerns and Bell Delwar method and other important parameters dealing with material selection and geometries are also taken into consideration. FEA analysis for optimizing the saddle support weight is carried out using Dassault systeme’s Solidworks while the CFD analysis for optimizing pressure drop and heat transfer rate is carried out using Dassault systeme’s Solidworks analysis software and the design and working of Shell and tube heat exchanger is determined in terms of variables such as pressure ,temperature ,mass flow rate ,flow rate ,energy input output that are of particular interest in Shell and tube heat exchanger analysis.


Author(s):  
Qihang Liu ◽  
Laihe Zhuang ◽  
Yanchen Fu ◽  
Bensi Dong ◽  
Jie Wen ◽  
...  

Abstract A novel approach is proposed to design an aircraft heat exchanger considering multiple working conditions to develop the conventional approach that designs for only one working condition. Calculation results show that the performance of the heat exchangers designed by this novel approach meets the requirement of pressure drop and heat transfer for all working conditions (flight height varies from 0 m to 12,000 m, and Mach number varies from 0 to 1.2). After working conditions discrete and heat exchanger design, the extreme working conditions of pressure drop and heat transfer rate are found not coincided, which have been all considered in design without artificially screening. Therefore, it is not necessary to find a ‘seeming extreme working condition’ before design for this approach. In the optimization design, a deeply optimized structure of heat exchanger is proposed by changing the values of the selected structural parameters to reduce by roughly 30% of the total weight in comparison to common design results. Moreover, the pressure drop and the heat transfer rate of the optimal result can be reasonably distributed at different working conditions. Actually in this novel approach, more other specific criteria required could be also added into the integrate criterion of optimization to control the result. In addition, two detailed optimization methods, sacrifice of secondary objective parameters and ‘the macro-to-micro design method’, have been proposed in optimization design for further optimal structure.


2014 ◽  
Vol 22 (04) ◽  
pp. 1450026 ◽  
Author(s):  
HONGGI CHO ◽  
TAEHUN KIM ◽  
JUNGHO KIM ◽  
CHANGSEON LEE ◽  
JAEYOUNG CHOI

The present study is aimed to investigate the effect of fin geometry on the performance of a concentric heat exchanger with the commercial CFD software of Star CCM+. In general, the concentric heat exchanger consists of inner and outer tubes. The inner tube has a lot of serrated fins spirally manufactured on its surface in order to increase the heat transfer performance. A simplified simulation model has been applied to simulate the performance of the concentric heat exchanger in this study. Both inner and outer tubes have the same length of 60 mm. The inner diameter of outer tube is 17.05 mm. The outer diameter of inner tube before manufacturing fins is 11.5 mm. Water is used as a working fluid and the concentric heat exchanger has a counter-flow configuration. The simulation parameters were fin height, fin thickness and fin width. It was found that heat transfer rate increased by 3–4% as the fin height increased from 0.95 to 1.15 mm. However, pressure drop increased highly by 39–41%. The effectiveness, which could be evaluated by calculating the ratio of enhancement of heat transfer rate to that of pressure drop, was about 74% for the fin height of 1.15 mm. In case of fin height of 1.05 mm, the effectiveness was 88% due to the increase in pressure drop, about 15%, compared with the base fin height of 0.95 mm. Also, it was noted that the effectiveness was about 88% and 95% for the fin thickness of 0.5 and 0.4 mm, respectively, compared with the base fin thickness of 0.3 mm. In case of increasing the fin width from 0.8 to 1.2 mm, the heat transfer rates slightly increased by 1–2% and the pressures drops increased by 3–4%. Hence, the effectiveness was about 98% for the fin width of 1.2 mm. And the effectiveness for the fin width of 1.0 mm was 97%. Based on the simulation results, it was concluded that maximum heat transfer rate has been obtained when the fin height is 1.15 mm. However, pressure drop is considerably increased by 39–41%. Therefore, the fin height should be carefully determined according to the criteria of pressure drop.


CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 37-60
Author(s):  
Mohammadreza Hasandust Rostami ◽  
Barat Ghobadian ◽  
Gholamhassan Najafi ◽  
Ali Motevali ◽  
Nor Azwadi Che Sidik

In this research, the thermal attributes of shell and finned tube heat exchanger such as thermal efficiency, pressure drop, heat transfer rate and average temperature in the tube side of heat exchanger with using the different volume concentration of nanoparticles (SWCNT and Graphene quantum dot) at the various Reynolds number by applying either fin blades and without fin blades have been conducted numerically. In this heat exchanger the hot fluid or nanofluid flows in the tube section and cold fluid or pure water moves in the shell side. As regarding to results obtained the majority of thermal characteristics like heat transfer rate, pressure drop and effectiveness enhanced with augmentation of Reynolds number and increasing of volume concentration of nanofluids to 1% volumetric of working fluid whereas at the higher volume concentrations of nanoparticles (upper from 1% volumetric) the thermal properties of heat exchanger decreased generally. Also pressure drop intensifies with increment of Reynolds number and volume concentration of nanoparticles that at higher Reynolds number the effects of nanoparticles on the pressure drop were more noticeable. The average temperature of heat exchanger in the end section of inside tubes increased with augmentation of Reynolds number and nanoparticles. Finally, according to the results obtained in this study, most impression on the thermal attributes enhancement was found by employing of finned tubes compared to other factor which this factor increased heat transfer rate of heat exchanger by almost 188% also the effects of nanoparticles at the high levels of volume concentration especially for 5% of SWCNT nanoparticle on the pressure drop obtained about 80% compared to the base fluid.


Sign in / Sign up

Export Citation Format

Share Document