Computation of the Fluid-Structure Interaction Between an Impinging Jet and a Flexible Plate

Author(s):  
Kak Namkoong ◽  
Hyoung G. Choi ◽  
J. Y. Yoo

For computation of the FSI (Fluid-Structure Interaction) problems, the combined formulation (Hesla, 1991) is adopted which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. Before tackling complex FSI problems, laminar flow around a freely falling cylinder is considered. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element formulation with ALE (Arbitrary Lagrangian-Eulerian) algorithm and Newton’s equations of motion for cylinder are solved. The adaptive mesh refinement technique is also adopted which uses stress error as a posteriori error estimator together with an efficient variable reordering and element-reordering method for unstructured finite element meshes. The newly reordered global matrix has a much narrower bandwidth than the original one, making the MILU (Nam et al., 2002) preconditioner perform better. The cylinder falls oscillating in the transverse direction and rotating about the center. It rotates in the positive rotational direction while it moves to the positive transverse direction and vice versa. The Strouhal number for a freely falling cylinder is lower than that for a fixed cylinder at the same Reynolds number and this is mainly due to the transverse oscillation. As a second FSI problem, laminar channel flow divided by a thin plate is considered and the dynamic response of the plate under the influence of channel flows is studied. For simplicity, we assume a 2-D laminar flow so that the plate can be modeled by a Bernoulli-Euler beam. The numerical simulation results are compared with Wang (1999). As a third FSI problem, oscillations of a vertical plate in resting fluid are studied and the results are compared with Glu¨ck et al. (2001). Finally, an impinging jet flow on a flexible plate is considered. There exists clearly an interaction between the impinging jet and the plate; the plate is deflected due to the impinging jet and the deflected plate then affects the flow field. This fluid-structure interaction continues until the damping by fluid viscosity terminates the vibration of the plate. The frequency response of the plate is different from that in free vibration case because the vibration of the plate is damped by fluid viscosity.

1981 ◽  
Vol 103 (2) ◽  
pp. 183-190 ◽  
Author(s):  
R. F. Kulak

In this paper a development is presented for a three-dimensional hexahedral hydrodynamic finite-element. Using trilinear shape functions and assuming a constant pressure field in each element, simple relations were obtained for internal nodal forces. Because the formulation was based upon a rate approach it was applicable to problems involving large displacements. This element was incorporated into an existing plate-shell finite element code. Diagonal mass matrices were used and the resulting discrete equations of motion were solved using an explicit temporal integrator. Results for several problems were presented which compare numerical predictions to closed form analytical solutions. In addition, the fluid-structure interaction problem of a fluid-filled, cylindrical vessel containing internal cylinders was studied. The internal cylinders were cantilever supported from the top cover of the vessel and were periodically located circumferentially at a fixed radius. A pressurized cylindrical cavity located at the bottom of the vessel at its centerline provided the loading.


2014 ◽  
Vol 91 ◽  
pp. 37-42 ◽  
Author(s):  
Alexander M. Belostosky ◽  
Pavel A. Akimov ◽  
Taymuraz B. Kaytukov ◽  
Irina N. Afanasyeva ◽  
Anton R. Usmanov ◽  
...  

Author(s):  
Prabu Ganesh Ravindren ◽  
Kirti Ghia ◽  
Urmila Ghia

Recent studies of the joined-wing configuration of the High Altitude Long Endurance (HALE) aircraft have been performed by analyzing the aerodynamic and structural behaviors separately. In the present work, a fluid-structure interaction (FSI) analysis is performed, where the fluid pressure on the wing, and the corresponding non-linear structural deformation, are analyzed simultaneously using a finite-element matrix which couples both fluid and structural solution vectors. An unsteady, viscous flow past the high-aspect ratio wing causes it to undergo large deflections, thus changing the domain shape at each time step. The finite element software ANSYS 11.0 is used for the structural analysis and CFX 11.0 is used for the fluid analysis. The structural mesh of the semi-monocoque joined-wing consists of finite elements to model the skin panel, ribs and spars. Appropriate mass and stress distributions are applied across the joined-wing structure [Kaloyanova et al. (2005)], which has been optimized in order to reduce global and local buckling. The fluid region is meshed with very high mesh density at the fluid-structure interface and where flow separation is predicted across the joint of the wing. The FSI module uses a sequentially-coupled finite element equation, where the main coupling matrix utilizes the direction of the normal vector defined for each pair of coincident fluid and structural element faces at the interface [ANSYS 11.0 Documentation]. The k-omega turbulence model captures the fine-scale turbulence effects in the flow. An angle of attack of 12°, at a Mach number of 0.6 [Rangarajan et al. (2003)], is used in the simulation. A 1-way FSI analysis has been performed to verify the proper transfer of loads across the fluid-structure interface. The CFX pressure results on the wing were transferred across the comparatively coarser mesh on the structural surface. A maximum deflection of 16 ft is found at the wing tip with a calculated lift coefficient of 1.35. The results have been compared with the previous study and have proven to be highly accurate. This will be taken as the first step for the 2-way simulation. The effect of a coupled 2-way FSI analysis on the HALE aircraft joined wing configuration will be shown. The structural deformation history will be presented, showing the displacement of the joined-wing, along the wing span over a period of aerodynamic loading. The fluid-structure interface meshing and the convergence at each time step, based on the quantities transferred across the interface will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document