Two-Fluid Large-Eddy Simulation Approach for Gas-Particle Turbulent Flows Using Equilibrium Assumption

Author(s):  
Babak Shotorban ◽  
S. Balachandar

This article illustrates a two-fluid large-eddy simulation (LES) approach for gas-particle turbulent flows. The equilibrium assumption in which the velocity of particles is approximated in terms of the velocity and acceleration of the gas phase, is made for the development of gas-particle LES formulation in this study. A filtered Eulerian velocity field is defined for particles and expressed in terms of the temporal and spatial derivatives of the gas-phase filtered velocity field. Also, filtered particle concentration defined in the Eulerian framework is governed by a transport equation with a closure problem resulted from filtering the particle concentration nonlinear convection term and in the form of subgrid-scale particle flux. A Smagorinsky kind of formulation is used to model the subgrid-scale particle flux and close the transport equation of the filtered particle concentration. The developed gas-particle LES formulation is implemented in a homogeneous shear turbulence configuration and results are discussed. It is shown that the equilibrium assumption is valid for sufficiently small particle time constants through conducting the direct numerical simulation of the same configuration.

2017 ◽  
Vol 29 (1) ◽  
pp. 015105 ◽  
Author(s):  
Maurits H. Silvis ◽  
Ronald A. Remmerswaal ◽  
Roel Verstappen

2005 ◽  
Vol 73 (3) ◽  
pp. 441-448 ◽  
Author(s):  
M. Yousuff Hussaini ◽  
Siva Thangam ◽  
Stephen L. Woodruff ◽  
Ye Zhou

The development of a continuous turbulence model that is suitable for representing both the subgrid scale stresses in large eddy simulation and the Reynolds stresses in the Reynolds averaged Navier-Stokes formulation is described. A recursion approach is used to bridge the length scale disparity from the cutoff wave number to those in the energy-containing range. The proposed model is analyzed in conjunction with direct numerical simulations of Kolmogorov flows.


Author(s):  
M. Yousuff Hussaini ◽  
Siva Thangam ◽  
Stephen L. Woodruff ◽  
Ye Zhou

The development of a continuous turbulence model that is suitable for representing both the subgrid scale stresses in large eddy simulation and the Reynolds stresses in the Reynolds averaged Navier-Stokes formulation is described. A recursion approach is used to bridge the length scale disparity from the cutoff wavenumber to those in the energy-containing range. The proposed model is analyzed in conjunction with direct numerical simulations of Kolmogorov flows.


1992 ◽  
Vol 238 ◽  
pp. 155-185 ◽  
Author(s):  
G. Erlebacher ◽  
M. Y. Hussaini ◽  
C. G. Speziale ◽  
T. A. Zang

New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are developed and tested based on the Favre-filtered equations of motion for an ideal gas. A compressible generalization of the linear combination of the Smagorinsky model and scale-similarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress tensor. An analogous thermal linear combination model is also developed for the subgrid-scale heat flux vector. The two dimensionless constants associated with these subgrid-scale models are obtained by correlating with the results of direct numerical simulations of compressible isotropic turbulence performed on a 963 grid using Fourier collocation methods. Extensive comparisons between the direct and modelled subgrid-scale fields are provided in order to validate the models. A large-eddy simulation of the decay of compressible isotropic turbulence – conducted on a coarse 323 grid – is shown to yield results that are in excellent agreement with the fine-grid direct simulation. Future applications of these compressible subgrid-scale models to the large-eddy simulation of more complex supersonic flows are discussed briefly.


Author(s):  
Zeynep N. Cehreli ◽  
Ibrahim Yavuz ◽  
Ismail B. Celik

In large eddy simulation, the key to the reliability of the solution with relatively large mesh size (this is unavoidable for high Re flows) is to develop effective and physically correct subgrid-scale (SGS) models. The behavior of various SGS models in large eddy simulations (LES) of free surface turbulent flows is investigated. The anisotropy of the turbulence observed near a free surface even a sub-grid scales can not be realized by a standard Smagorinsky model (SMG). The SMG model is improved with free surface modifications. This model is verified on an open channel flow benchmark and then applied to the simulation of a surface ship wake. The turbulence features are studied and compared with the results of a simulation without free surface effects. The modifications in the SGS model damps the vertical velocity fluctuations as desired. This study provides a better understanding of SGS models, when applied to the case of the wake of a turning surface ship.


Sign in / Sign up

Export Citation Format

Share Document