Visualization of the Heat Transfer Enhancement During Condensation in a Microfin Tube

Author(s):  
Alberto Cavallini ◽  
Davide Del Col ◽  
Luca Doretti ◽  
Simone Mancin ◽  
Luisa Rossetto ◽  
...  

Microfins tubes are largely used in refrigeration industry for in-tube refrigerant condensation, because of the heat transfer enhancement when compared to equivalent smooth tubes under the same operating conditions. But not much evidence about the effect of microfins on the condensation flow patterns is available in the open literature. There is agreement in the open literature that the mechanisms of heat transfer are intimately linked with the prevailing two-phase flow regime. The present authors have recently measured the heat transfer coefficient during condensation of R410A in a microfin tube. The heat transfer enhancement in this tube can be experimentally evaluated by comparing those coefficients to the ones measured by Cavallini et al. (2001) in a plain tube, at the same operating conditions. The same operative conditions (saturation temperature, vapor quality and mass flux), occurring during the heat transfer measurements, were reproduced in a different section for visualization of flow patterns during condensation of R410A. The flow visualization has been carried out both in the plain tube and in the microfin tube. The objective of the present paper is to present the heat transfer enhancement during condensation of R410A and to show the flow visualized at the same operating condition for both the smooth and the microfin tube, aiming to link the heat transfer enhancement to the flow pattern variation.

1999 ◽  
Vol 122 (2) ◽  
pp. 266-277 ◽  
Author(s):  
J. E. Bryan ◽  
J. Seyed-Yagoobi

The relationship between the mean radial electrohydrodynamic (EHD) pressure and the rate of the axial momentum flux and its influence on heat transfer enhancement and pressure drop in EHD-enhanced convective boiling of R-134a in a horizontal smooth tube was investigated in detail. A simple theory, which included the characteristics of two-phase flow, was developed to determine the mean radial EHD pressure. It was shown that the amount of heat transfer enhancement and the pressure drop penalty were dependent upon the size of the mean radial EHD pressure relative to the rate of the axial momentum flux. The influence of the mass flux, change in quality, and saturation temperature on the mean radial EHD pressure relative to the rate of the axial momentum flux was also studied. This study has provided a greater understanding of EHD enhancement of the convective boiling heat transfer. [S0022-1481(00)01802-8]


Equipment ◽  
2006 ◽  
Author(s):  
Leonid L. Vasiliev ◽  
A. Zhuravlyov ◽  
A. Shapovalov ◽  
L. L. Vasiliev, Jr

Author(s):  
Raphael Mandel ◽  
Serguei Dessiatoun ◽  
Patrick McCluskey ◽  
Michael Ohadi

This work presents the experimental design and testing of a two-phase, embedded manifold-microchannel cooler for cooling of high flux electronics. The ultimate goal of this work is to achieve 0.025 cm2-K/W thermal resistance at 1 kW/cm2 heat flux and evaporator exit vapor qualities at or exceeding 90% at less than 10% absolute pressure drop. While the ultimate goal is to obtain a working two-phase embedded cooler, the system was first tested in single-phase mode to validate system performance via comparison of experimentally measured heat transfer coefficient and pressure drop to the values predicted by CFD simulations. Upon validation, the system was tested in two phase mode using R245fa at 30°C saturation temperature and achieved in excess of 1 kW/cm2 heat flux at 45% vapor quality. Future work will focus on increasing the exit vapor quality as well as use of SiC for the heat transfer surface upon completion of current experiments with Si.


2013 ◽  
Vol 5 ◽  
pp. 256839
Author(s):  
Somchai Wongwises ◽  
Afshin J. Ghajar ◽  
Kwok-wing Chau ◽  
Octavio García Valladares ◽  
Balaram Kundu ◽  
...  

2021 ◽  
Author(s):  
Jaime Rios ◽  
Mehdi Kabirnajafi ◽  
Takele Gameda ◽  
Raid Mohammed ◽  
Jiajun Xu

The present study experimentally and numerically investigates the flow and heat transfer characteristics of a novel nanostructured heat transfer fluid, namely, ethanol/polyalphaolefin nanoemulsion, inside a conventionally manufactured minichannel of circular cross section and a microchannel heat exchanger of rectangular cross section manufactured additively using the Direct Metal Laser Sintering (DMLS) process. The experiments were conducted for single-phase flow of pure polyalphaolefin (PAO) and ethanol/PAO nanoemulsion fluids with two ethanol concentrations of 4 wt% and 8 wt% as well as for two-phase flow boiling of nanoemulsion fluids to study the effect of ethanol nanodroplets on the convective flow and heat transfer characteristics. Furthermore, the effects of flow regime of the working fluids on the heat transfer performance for both the minichannel and microchannel heat exchangers were examined within the laminar and transitional flow regimes. It was found that the ethanol/PAO nanoemulsion fluids can improve convective heat transfer compared to that of the pure PAO base fluid under both single- and two-phase flow regimes. While the concentration of nanoemulsion fluids did not reflect a remarkable distinction in single-phase heat transfer performance within the laminar regime, a significant heat transfer enhancement was observed using the nanoemulsion fluids upon entering the transitional flow regime. The heat transfer enhancement at higher concentrations of nanoemulsion within the transitional regime is mainly attributed to the enhanced interaction and interfacial thermal transport between ethanol nanodroplets and PAO base fluid. For two-phase flow boiling, heat transfer coefficients of ethanol/PAO nanoemulsion fluids were further enhanced when the ethanol nanodroplets underwent phase change. A comparative study on the flow and heat transfer characteristics was also implemented between the traditionally fabricated minichannel and additively manufactured microchannel of similar dimensions using the same working fluid of pure PAO and the same operating conditions. The results revealed that although the DMLS fabricated microchannel posed a higher pressure loss, a substantial heat transfer enhancement was achieved as compared to the minichannel heat exchanger tested under the same conditions. The non-post processed surface of the DMLS manufactured microchannel is likely to be the main contributor to the augmented heat transfer performance. Further studies are required to fully appreciate the possible mechanisms behind this phenomenon as well as the convective heat transfer properties of nanoemulsion fluids.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Ting-Yu Lin ◽  
Satish G. Kandlikar

The effect of structured roughness on the heat transfer of water flowing through minichannels was experimentally investigated in this study. The test channels were formed by two 12.7 mm wide × 94.6 mm long stainless steel strips. Eight structured roughness elements were generated using a wire electrical discharge machining (EDM) process as lateral grooves of sinusoidal profile on the channel walls. The height of the roughness structures ranged from 18 μm to 96 μm, and the pitch was varied from 250 μm to 400 μm. The hydraulic diameter of the rectangular flow channels ranged from 0.71 mm to 1.87 mm, while the constricted hydraulic diameter (obtained by using the narrowest flow gap) ranged from 0.68 mm to 1.76 mm. After accounting for heat losses from the edges and end sections, the heat transfer coefficient for smooth channels was found to be in good agreement with the conventional correlations in the laminar entry region as well as in the laminar fully developed region. All roughness elements were found to enhance the heat transfer. In the ranges of parameters tested, the roughness element pitch was found to have almost no effect, while the heat transfer coefficient was significantly enhanced by increasing the roughness element height. An earlier transition from laminar to turbulent flow was observed with increasing relative roughness (ratio of roughness height to hydraulic diameter). For the roughness element designated as B-1 with a pitch of 250 μm, roughness height of 96 μm and a constricted hydraulic diameter of 690 μm, a maximum heat transfer enhancement of 377% was obtained, while the corresponding friction factor increase was 371% in the laminar fully developed region. Comparing different enhancement techniques reported in the literature, the highest roughness element tested in the present work resulted in the highest thermal performance factor, defined as the ratio of heat transfer enhancement factor (over smooth channels) and the corresponding friction enhancement factor to the power 1/3.


Author(s):  
Sujoy Kumar Saha ◽  
Hrishiraj Ranjan ◽  
Madhu Sruthi Emani ◽  
Anand Kumar Bharti

Sign in / Sign up

Export Citation Format

Share Document