Volume 2: Fora
Latest Publications


TOTAL DOCUMENTS

144
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By ASMEDC

0791847519, 0791837831

2006 ◽  
Author(s):  
Shriram Pillapakkam ◽  
Pushpendra Singh ◽  
Denis L. Blackmore ◽  
Nadine Aubry

A finite element code based on the level set method is developed for performing two and three dimensional direct numerical simulations (DNS) of viscoelastic two-phase flow problems. The Oldroyd-B constitutive equation is used to model the viscoelastic liquid and both transient and steady state shapes of bubbles in viscoelastic buoyancy driven flows are studied. The influence of the governing dimensionless parameters, namely the Capillary number (Ca), the Deborah Number (De) and the polymer concentration parameter c, on the deformation of the bubble is also analyzed. Our simulations demonstrate that the rise velocity oscillates before reaching a steady value. The shape of the bubble, the magnitude of velocity overshoot and the amount of damping depend mainly on the parameter c and the bubble radius. Simulations also show that there is a critical bubble volume at which there is a sharp increase in the bubble terminal velocity as the increasing bubble volume increases, similar to the behavior observed in experiments. The structure of the wake of a bubble rising in a Newtonian fluid is strikingly different from that of a bubble rising in a viscoelastic fluid. In addition to the two recirculation zones at the equator of the bubble rising in a Newtonian fluid, two more recirculation zones exist in the wake of a bubble rising in viscoelastic fluids which influence the shape of a rising bubble. Interestingly, the direction of motion of the fluid a short distance below the trailing edge of a bubble rising in a viscoelastic fluid is in the opposite direction to the direction of the motion of the bubble, thus creating a “negative wake”. In this paper, the velocity field in the wake of the bubble, the effect of the parameters on the velocity field and their influence on the shape of the bubble are also investigated.


2006 ◽  
Author(s):  
A. A. Mozafari ◽  
M. H. Saidi ◽  
J. Neyestani ◽  
A. E. Sany

Investigation of air distribution and wind effect on a vehicle body from the point of view of underhood heat transfer effect and proper positioning of vehicle elements such cooler, condenser and engine configuration is an important area for engine researchers and manufacturers as well. In this research, the effect of air velocity distribution and wind effect around a vehicle is simulated and temperature and velocity distribution around engine block which is influenced by the wind effect is investigated. Thermal investigation of the engine compartment components is performed using results of underhood air temperature and velocity distribution. The heat transfer from engine surface is calculated from the engine energy balance in which their input data are obtained from a comprehensive experimental study on a four cylinder gasoline engine.


Author(s):  
Sandra Velarde-Sua´rez ◽  
Rafael Ballesteros-Tajadura ◽  
Jose´ Gonza´lez-Pe´rez ◽  
Bruno Pereiras-Garci´a

In this work, a numerical simulation on the main flow features in a squirrel-cage fan, used in automotive air conditioning units, has been carried out. A 3D unsteady model has been developed for the entire machine. The flow in this geometrical model has been solved using the commercial code FLUENT®. Some of the analyzed features are the performance curves, the flow distribution over the different aspiration sections, the pressure and velocity distributions in selected surfaces, and the forces on the blades and on the whole impeller. The numerical results have been compared with the available experimental data, showing a reasonable good agreement.


2006 ◽  
Author(s):  
Francisco Elizalde-Blancas ◽  
Ismail Celik ◽  
Suryanarayana Pakalapati

In this study numerical solutions are presented for a steady state, incompressible, 2-D turbulent flow near a wall. For this specific problem a manufactured (exact) solution was provided by the organizers of the 2006 Lisbon Workshop [6]. With the help of manufactured solution, assessment of the true error and other relevant uncertainty measures are possible. The calculations were performed using the commercial flow solver FLUENT along with some user defined functions to define source terms and velocity profiles at boundaries. Though the flow regime is turbulent; the numerical solution is carried out for pseudo-laminar flow. This was done in order to avoid the errors implicit in turbulence models. The transformation from turbulent to laminar flow was done by defining a momentum source term which precludes the pressure gradient term. A detailed grid convergence analysis was performed. Using three-grid triplets the limiting values of the variables solved as the grid size tends to zero were calculated using different extrapolations. The L2 norms of the true error obtained from various extrapolations are assessed. These results exhibit solution convergence as the grid size decreases. It was also shown that cubic spline extrapolation perform the best among the methods considered.


Author(s):  
Zhiliang Xu ◽  
Roman Samulyak ◽  
James Glimm ◽  
Xiaolin Li

A discrete vapor bubble model is developed to simulate the unsteady cavitating flows. The mixed vapor-liquid mixture is modeled as a system of pure phase domains (vapor and liquid) separated by free interfaces. On the phase boundary, a numerical solution for the phase transition is developed for compressible flows.


2006 ◽  
Author(s):  
C. J. Weiland ◽  
P. P. Vlachos

Supercavitation inception and formation was studied over blunt projectiles. The projectiles were fired using a gas gun method. In this method, projectiles are launched under the action of expanding detonation gases. Both qualitative and quantitative optical flow diagnostics using high speed digital imaging were used to analyze the spatio-temporal development of the supercavitating flow. For the first time, quantification of the supercavitation was achieved using Time Resolved Digital Particle Image Velocimetry (TRDPIV) detailing the two phase flow field surrounding the translating projectiles and the gas vapor bubble. Experimental results indicate that the supercavity forms at the aft end of the projectile and travels forward along the direction of projectile travel. The impulsive start of the projectile generates two asymmetric vortices which are shed from the blunt nose of the projectile. The vortices interact with the moving cavity and subsequently deform. This interaction is believed to directly contribute to the instabilities in the flight path.


2006 ◽  
Author(s):  
Pankaj Jain ◽  
Kausik Sarkar

Steady dissolution of a bubble with two gases and a permeable shell has been modeled. At first the shell is modeled without elasticity. Factors such as permeability of the shell, surface tension, mole fraction of the osmotic agent, gas concentration in the bulk have been varied to study the growth and the time scale for dissolution of the bubble. It has been found that the inclusion of shell elasticity also plays a vital role in the growth and dissolution of the bubble.


2006 ◽  
Author(s):  
Xiaoyi Li ◽  
Kausik Sarkar

The adhesion of cells to substrates is a critical step in plenty of biological events. The effects of cell deformation on the adhesion process have been investigated using a direct fluid dynamics simulation based on front-tracking method. A model including membrane elasticity and stochastic receptor-ligand binding has been developed. The study reveals a surprising effect of cell deformation. An asymmetry in upstream-downstream flow field due to cell deformation results in a hydrodynamic lift. The lift force counterbalances the shear torque and causes reduced contact area and reduced number of bond formed, and leads to cell detachment at relatively low shear rate. The finding of lift could be used to partially explain the shear threshold phenomenon occurring at small shear stresses.


2006 ◽  
Author(s):  
A. Kourta ◽  
G. Petit ◽  
J. C. Courty ◽  
J. P. Rosenblum

The control of subsonic high lift induced separation on airfoil may improve the flight envelope of current aircraft or even simplify the complex and heavy high-lift devices on commercial airframes. Until now, synthetic jets have proved a really interesting efficiency to delay or remove even leading-edge located separated areas on high-lift configuration but are not efficient for real scale aircrafts. In case of pressure-like separation (i.e. from trailing-edge), synthetic jets can be replaced by so the called “Vortex Generator Jets” which create strong longitudinal vortices that increase mixing in inner boundary layer and consequently the skin friction coefficient is increased to prevent separation. In this study, numerical simulations were undertaken on a generic three dimensional flat plate in order to quantify the effect of the longitudinal vortices on the natural skin friction coefficient. Both counter and co-rotative devices were tested at different exhaust velocities and distances between each others. Finally co-rotative vortex generators jets were tested on a three dimensional generic airfoil ONERA D. Results show a delay of the separation occurence but this solution does not seem to be as robust as synthetic jets. The study of jets spacing with respect to the efficiency of the devices shows a maximum for a given ratio of spacing to exhaust velocity.


Author(s):  
Shenq-Yuh Jaw ◽  
Robert R. Hwang ◽  
K. L. Shyu

In this study, red, green, and blue light-emitting diodes (LED) are adopted as the light source to illuminate sequentially a two-dimensional soap film channel flow. Triple-exposure particle image is recorded on the same image frame by a 3-ccd color camera. Since the particles illuminated by the R, G, B LED will only be recorded on the R, G, B ccd-chip of the digital camera, three sequential exposure, R, G, B particle images can be obtained from separating the triple-exposure particle image. Two sequential velocity fields can be determined from the correlation analysis of the R-G and G-B sequential particle images. Time derivative of the velocity fields, and hence the evolution of the unsteady flow or the characteristics of turbulent flows can be analyzed from the two velocity fields determined. The color PIV method incorporated with the LED light has proven to be a cheap, safe, and powerful tool for the full-field flow measurements. Results of the flow past circular cylinder in the confined soap film channel flow are presented.


Sign in / Sign up

Export Citation Format

Share Document