The Effect of the Boundary Layer Separation in Y-Junction Shape

Author(s):  
Khaled Alhussan

The work to be presented herein is a theoretical and numerical analysis of the complex fluid mechanism that occurs inside a Y-junction shape specifically with regard to the boundary layer separation, vortex shedding and generation of wake. The boundary layer separates from the surface forms a free shear layer and is highly unstable. This shear layer will eventually roll into a discrete vortex and detach from the surface. A periodic flow motion will develop in the wake as a result of boundary layer vortices being shed from the solid boundary. The periodic nature of the vortex shedding phenomenon can sometimes lead to unwanted structural vibrations, especially when the shedding frequency matches one of the resonant frequencies of the structure. This paper shows a numerical analysis of boundary layer separation that occurs in an internal flow; the Y-junction shape. This research shows a numerical simulation of mapping the flow inside Y-junction shape flow. The results show that for small divergent angle namely less that 30-degree the flow separation is almost negligible and that downstream, away from the junction, the boundary layer reattaches and normal flow occurs i.e. the effect of the boundary layer separation is only local.

Author(s):  
Khaled Alhussan

Flow over external bodies has been studied extensively because of their many practical applications. For example, flow past a rectangular bodies, usually experiences strong flow oscillations and boundary layer separation in the wake region behind the body. As a fluid particle flows toward the leading edge of a rectangular body, the pressure of the fluid particle increases from the free stream pressure to the stagnation pressure. The boundary layer separates from the surface forms a free shear layer and is highly unstable. This shear layer will eventually roll into a discrete vortex and detach from the surface. A periodic flow motion will develop in the wake as a result of boundary layer vortices being shed alternatively from either side of the rectangular shapes. The periodic nature of the vortex shedding phenomenon can sometimes lead to unwanted structural vibrations, especially when the shedding frequency matches one of the resonant frequencies of the structure. The work to be presented herein is a theoretical and numerical analysis of the complex fluid mechanism that occurs over stack of rectangular bodies for different number of rectangular bodies, specifically with regard to the vortex shedding and generation of wake. A number of important conclusions follow from the current research. First, study of the actual flow configuration over rectangular bodies offers some insight into the complex flow phenomena. Second, the characteristics of the vortex and wakes change considerably with the number of bodies.


2018 ◽  
Vol 9 (1) ◽  
pp. 106 ◽  
Author(s):  
Yongwei Liu ◽  
Yalin Li ◽  
Dejiang Shang

Flow-induced noise from the sail hull, which is induced by the horseshoe vortex, the boundary layer separation and the tail vortex shedding, is a significant problem for the underwater vehicles, while has not been adequately studied. We have performed simulations and experiments to reveal the noise generation mechanism from these flows using the scaled sail hull with part of a submarine body. The large eddy simulation and the wavenumber–frequency spectrum are adopted for simulations. The frequency ranges from 10 Hz to 2000 Hz. The simulation results show that the flow-induced noise with the frequency less than 500 Hz is mainly generated by the horseshoe vortex; the flow-induced noise because of the tail vortex shedding is mainly within the frequency of shedding vortex, which is 595 Hz in the study; the flow-induced noise caused by the boundary layer separation lies in the whole frequency range. Moreover, we have conducted the experiments in a gravity water tunnel, and the experimental results are in good accordance with the simulation results. The results can lay the foundation for the design of flow control devices to suppress and reduce the flow-induced noise from the sail hull.


1967 ◽  
Vol 89 (3) ◽  
pp. 655-663 ◽  
Author(s):  
H. L. Moses ◽  
J. R. Chappell

An investigation of turbulent boundary-layer separation in internal flow is presented, with experimental results for a variable angle, two-dimensional diffuser. A simple analytical model is adopted, which consists of wall boundary layers and a one-dimensional, inviscid core. By calculating the pressure simultaneously with the boundary-layer development, the approximate method is extended to include the separated region. With a limited amount of separated flow, the calculated pressure recovery agrees reasonably well with the experiments and gives a fair indication of maximum diffusion performance. The limitation of the model, as well as the possibility of singularities and downstream instability, are discussed in relation to the general problem of boundary-layer separation.


2017 ◽  
Author(s):  
Arkady Zaryankin ◽  
Andrey Rogalev ◽  
Ivan Komarov ◽  
V. Kindra ◽  
S. Osipov

2021 ◽  
Vol 11 (6) ◽  
pp. 2593
Author(s):  
Yasir Al-Okbi ◽  
Tze Pei Chong ◽  
Oksana Stalnov

Leading edge serration is now a well-established and effective passive control device for the reduction of turbulence–leading edge interaction noise, and for the suppression of boundary layer separation at high angle of attack. It is envisaged that leading edge blowing could produce the same mechanisms as those produced by a serrated leading edge to enhance the aeroacoustics and aerodynamic performances of aerofoil. Aeroacoustically, injection of mass airflow from the leading edge (against the incoming turbulent flow) can be an effective mechanism to decrease the turbulence intensity, and/or alter the stagnation point. According to classical theory on the aerofoil leading edge noise, there is a potential for the leading edge blowing to reduce the level of turbulence–leading edge interaction noise radiation. Aerodynamically, after the mixing between the injected air and the incoming flow, a shear instability is likely to be triggered owing to the different flow directions. The resulting vortical flow will then propagate along the main flow direction across the aerofoil surface. These vortical flows generated indirectly owing to the leading edge blowing could also be effective to mitigate boundary layer separation at high angle of attack. The objectives of this paper are to validate these hypotheses, and combine the serration and blowing together on the leading edge to harvest further improvement on the aeroacoustics and aerodynamic performances. Results presented in this paper strongly indicate that leading edge blowing, which is an active flow control method, can indeed mimic and even enhance the bio-inspired leading edge serration effectively.


Sign in / Sign up

Export Citation Format

Share Document