Intermittently Operated Oil Hydraulic Pump Unit With Accumulator to Save Energy and Hydraulic Assist for Restart

Author(s):  
Katsumasa Suzuki ◽  
Shinpei Ota ◽  
Shuji Kasuya ◽  
Ken Sugimura

Efforts to conserve energy have been made in a number of fields due to a shortage of energy resources, such as oil, and the need to protect the Earth’s environment. In the field of hydraulics, energy-saving pump units are very important because they consume less energy. At present, variable displacement type hydraulic pump units (VD pump units) and inverter control type pump units (INV pump units) are widely used. The authors propose using an intermittently operated pump unit coupled with an accumulator (ACC pump unit). It is verified that the ACC pump unit is superior to the others in terms of efficiency, especially when the flow rate to the load is small or the duty ratio for the intermittent work is low. However, the stop/restart operation of the electric motor for the pump drive is repeated frequently, and the instantaneous electric power consumed by the electric motor is more than six times the rated electricity when the pump is restarted. Therefore, we decreased the excess electricity consumption at pump restart using a method called “hydraulic assist”. Before the electric motor is turned on, high-pressure fluid is supplied to the pump inlet from the accumulator. The pressure at the pump outlet is made to be zero by opening the valve to the tank. The pump essentially works as a hydraulic motor. Then, the electric motor is turned on. In this method, the instantaneous electric power consumption is reduced. This method is also applied to a hydraulic pump unit driven by an internal combustion engine. The intermittent operation of the engine-driven hydraulic pump unit was accomplished using hydraulic assist to restart the pump. In this report, the energy-saving characteristics are shown.

Author(s):  
V D Mills ◽  
J R Wagner

Hybrid vehicles integrate an internal combustion engine, electric motor with accompanying battery pack and generator, and potentially fuel cells to realize greater fuel economy and reduced emission levels. A variety of powertrain operating scenarios exist including engine with belt-driven generator, electric motor using battery pack and/or fuel cell and, finally, engine and electric motor. Automotive subsystems such as hydraulic power steering cannot be consistently powered by a conventional belt-driven hydraulic pump since the engine may be frequently turned off to conserve energy. Thus, a need exists to investigate the dynamic behaviour of various steering systems for hybrid vehicles in terms of platform steering characteristics and power consumption. In this paper, empirical and analytical mathematical models will be presented for power (e.g. hydraulic, electric and steer by wire) rack and pinion steering units. The influence of chassis, tyre-road interface and steering system non-linearities are introduced. Representative numerical results will be presented and discussed to investigate a vehicle's transient response for each steering system configuration.


2010 ◽  
Vol 132 (07) ◽  
pp. 40-44
Author(s):  
Frank Wicks

This article focuses on the engineering credit that should be given to the bicycle designs and its hand in today’s technological innovations. Design improvements during the first 90 years of the bicycle’s history provided much of the initial technology that was extended to modern motorized forms of transportation. More important than the bicycle’s effect on the close of the 19th century was its influence on the 20th. The most common hybrid vehicle of the future may not be the now familiar four-wheel automobile combining an internal combustion engine and electric motor, but the electric bicycle that can be powered either by a rider’s muscles or energy stored in a battery. A development like that would be almost full circle. The only difference between that future and the first safety bicycle would be that electric power was harnessed along the way.


2010 ◽  
Vol 2010 (0) ◽  
pp. 58-59 ◽  
Author(s):  
Katumasa Suzuki ◽  
Ken Sugimura ◽  
Sinpei Ota ◽  
Teturou Doi

2015 ◽  
Vol 46 (6) ◽  
pp. 41-47 ◽  
Author(s):  
Shuji KASUYA ◽  
Ken SUGIMURA ◽  
Kenichiro NONAKA ◽  
Katsumasa SUZUKI

2012 ◽  
Vol 6 (4) ◽  
pp. 426-433 ◽  
Author(s):  
Ken Sugimura ◽  
◽  
Katsumasa Suzuki

Efforts to save energy have been made in a number of fields due to a shortage of energy resources, such as oil, and a need to protect the earth’s environment. In the field of hydraulics, energy saving pump units are very important because of the energy they consume. At present, a variable displacement-type hydraulic pump units (VD pump unit) and inverter control-type pump units (INV pump unit) are widely used. In this paper, the authors propose using an intermittently operated pump unit coupled with an accumulator (ACC pump unit). First, the electric power consumption, pump output pressure, rotation speed, and efficiency of three types pump units are measured when the same work is done using a modeled machine tool. Next, the load is abstracted to clarify the general characteristics of intermittent work, and the electric power consumption and efficiency of each pump unit are measured. Finally, the static characteristics of each pump unit are measured, and it is verified that the ACC pump unit saves the most energy.


2011 ◽  
Vol 42 (4) ◽  
pp. 74-80 ◽  
Author(s):  
Ken Sugimura ◽  
Sinpei Ota ◽  
Teturou Doi ◽  
Katsumasa Suzuki ◽  
Kenichirou Nonaka

Author(s):  
Feng Wang ◽  
Linyi Gu ◽  
Jianwei Cao ◽  
Ying Chen

A novel seawater pressure energy conversion system that utilizes seawater pressure to generate electric energy has been studied in this paper. The energy conversion system utilizes the pressure difference between the pressurized seawater and the empty pressure container to drive hydraulic motor and the coaxially coupled generator to generate electric energy. The output electric energy has been recorded by the data logger throughout the process. However, the actual conversion efficiency from seawater pressure energy to electric energy reaches only 63.8%. Moreover, the electric power supply time of the conversion system has mainly been limited by the holding capacity of the empty pressure container. The low conversion efficiency and the short electric power supply time have limited its application in the long-term in-situ observatory stations. Therefore, a new hydraulic driving system consisting of high-speed on/off valves will be applied to the system not only to improve the conversion efficiency but also to extend the electric power supply time. In the new hydraulic driving system, the input flow rate of the system has been largely reduced due to the recycle of the flow through the hydraulic motor. Thus the conversion efficiency has been improved and the electric power supply time has been extended. In the current study, the analysis is conducted at various duty ratios of PWM (Pulse Width Modulation) signal which is provided to highspeed on/off valves so as to obtain maximum conversion efficiency. Research shows the optimum duty ratio and the maximum conversion efficiency at the optimum duty ratio can be theoretically calculated when the properties of the system are known. Simulation results have demonstrated the influence of duty ratio on conversion efficiency. Although the conversion efficiency of the system with the new hydraulic driving system has not increased significantly, the reduction of the input flow rate has largely extended the electric power supply time which is very useful for long-term in-situ observatory stations.


2013 ◽  
Vol 44 (2) ◽  
pp. 29-34
Author(s):  
Ken SUGIMURA ◽  
Sinpei OTA ◽  
Katsumasa SUZUKI ◽  
Kenichirou NONAKA

Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Sign in / Sign up

Export Citation Format

Share Document