output pressure
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 39)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Song Chen ◽  
Zhen He ◽  
Chaoping Qian ◽  
Jianping Li ◽  
Zhonghua Zhang ◽  
...  

A piezoelectric micro gas compressor with parallel-serial hybrid chambers (PMGCPS) is presented, which consists of two compression stages of stage I and stage II. The stage I is composed of two piezoelectric driving units connected in parallel, while stage II is composed of a piezoelectric driving unit, forming an integral tower compression structure. Based on the tower compression structure, the PMGCPS owns the dual advantages of large flow rate and high output pressure. The prototype of PMGCPS is designed and manufactured. The driving frequency and voltage characteristics of PMGCPS are experimented. Under the driving frequency of 300 Hz and the driving voltage of 300 Vpp, the maximum flow rate and output pressure of PMGCPS is 795.6 mL/min and 13.4 kPa, respectively. PMGCPS provides new ideas for the further development of piezoelectric micro gas compressor.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yuqi Wang ◽  
Xinhui Liu ◽  
Jinshi Chen ◽  
Dongyang Huo

AbstractLoad-sensing steering systems for articulated loaders are prone to large pressure shocks and oscillations during steering operations, affecting the system stability. An optimized structure of the redirector with bypass damping is proposed to improve this phenomenon. In this structure, orifices and throttle grooves are added to the traditional redirector. To control the steering load and working conditions, the steering load of the loader is replaced by a pressure regulating valve. Simulation and experimental results reveal that the redirector with bypass damping has better load-sensing characteristics than the traditional redirector. The peak output pressure shock caused by the load unit step signal decreases from 6.50 to 5.64 MPa, which means the pressure oscillation of the hydraulic system is reduced by 13.4%. The pressure fluctuation time can be reduced from 2.09 to 1.6 s, with a decrease rate of 23.4%. The output pressure oscillation decays swiftly, and the smoothness of the steering operation is improved significantly.


2021 ◽  
Author(s):  
Rudolf Scheidl

Abstract This paper investigates a concept for the pure hydraulic control of a buck converter using a hydraulically piloted 2-2 way on-off valve. The pilot system is controlled by the desired output pressure of the buck converter in form of a pressure signal and the RC filtered feedback of the actual pressure. These pressures act via small plunger cylinders in opposite direction on the on-off valve. An additional pilot cylinder features a jumping active hydraulic area for a robust feedback. The valve performs close to rectangular oscillations, the frequency of which is mainly determined by the characteristic time of the RC filter. The concept is studied by a simple analytical model to obtain its basic operating characteristics and by a detailed numerical model to analyze the role of parasitic effects on system performance. The paper shows that this concept works and can robustly follow the commanded output pressure. The converter has a moderate response dynamics; in certain operation conditions it shows an aperiodic behavior by alternating between phases of periodic switching and pause.


2021 ◽  
Author(s):  
Qiandiao Wei ◽  
He Xu ◽  
Siqing Chen ◽  
Weiwang Fan

Abstract Soft robots driven by pressurized fluid have recently been attracted more attention and achieved a variety of innovative applications in bionics, medical surgery, rehabilitation, search, and rescue system. And they have been demonstrated to be able to perform many different tasks, especially in some conditions of demand a high degree of compliance. Generally, they consisted of multiple actuate channels that require independent works. Consequently, a mass of pressure regulators and input pipelines are demanded, which will increase the complexity of the control system. To solve this problem, we propose a new pressure control method inspired by the control bus of electronic interface technology in this paper. An addressable pressure control bus system based on band-pass valve (BPV) and square wave of pressure (control signal) was designed. It consisted of a pressure supply source and an addressing signal, they are controled by two regulators, respectively. One of the pressure pipelines serves as the control bus to transmit the control pressure signal, which plays an addressing signal role in the system. The other serves as the pressure supply source of the multi-channel actuators. The BPV can be set to different opening pressure bands to realize the setting of diverse outputs address codes on the bus. This method discovered the work mode of double-input multi-output, which will get rids of the traditional control method of single-input single-output. In this paper, we designed the BPV and tested its function. To demonstrate the feasibility of this method proposed, a control system with two output ports was established. The result has shown that the output port can be selected by the pressure square wave signal, which realizes the function of single input multiple outputs. It reduces the complexity of the control strategy of the fluid control system.


2021 ◽  
Author(s):  
Omar Ben Dali ◽  
Sergey Zhukov ◽  
Matthias Rutsch ◽  
Claas Hartmann ◽  
Heinz Von Seggern ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 232
Author(s):  
Haroon Ahmad Khan ◽  
So-Nam Yun ◽  
Eun-A Jeong ◽  
Jeong-Woo Park ◽  
Byung-Il Choi

Solenoid-actuated pressure-reducing valves are commonly used in hydraulic machinery. Most studies on solenoid-actuated pressure control devices are focused on the electrical input signals or on the control techniques for the solenoid valves, but no study has been done that determines the influence of the design parameters on the valve’s output. Before designing a controller, it is imperative to know the valve’s performance by determining the significance of each valve parameter. In this study, established physical laws from fluid dynamics and mechanics are used to build a model that is solved using the ODE 45 solver of Simulink in the time domain. The actuating force, up to 15 N, exerted on the spool and the inlet pressure, ranging from 50 to 80 bar, are obtained through experimentation. It is found that the output pressure fluctuates significantly if the outlet is blocked, while at the fully opened outlet condition, a flow rate of 12 (L/min) was obtained. A pin diameter of 2.15 mm enables us to vary the output pressure between 0 and 41 bar. We found that higher inlet pressure leads to lower output pressure as the outlet is opened. No linearization of the actual mathematical model is performed, which makes the study unique.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Toshio Takayama ◽  
Yusuke Sumi

AbstractRecently pneumatic-driven soft robots have been widely developed. Usually, the operating principle of this robot is the inflation and deflation of elastic inflatable chambers by air pressure. Some soft robots need rapid and periodic inflation and deflation of their air chambers to generate continuous motion such as progress motion or rotational motion. However, if the soft robot needs to operate far from the air pressure source, long air tubes are required to supply air pressure to its air chambers. As a result, there is a large delay in supplying air pressure to the air chamber, and the motion of the robot slows down. In this paper, we propose a compact device that changes its airflow passages by self-excited motion generated by a supply of continuous airflow. The diameter and the length of the device are 20 and 50 mm, respectively, and can be driven in a small pipe. Our proposed in-pipe mobile robot is connected to the device and can move in a small pipe by dragging the device into it. To apply the device widely to other soft robots, we also discuss a method of adjusting the output pressure and motion frequency.


2021 ◽  
Author(s):  
Sima Darbasi ◽  
Mohammad Javad Mirzaei ◽  
Amir Musa Abazari ◽  
Ghader Rezazadeh

Abstract A capacitive micromachined ultrasonic transducer (CMUT) due to many benefits is being considered as an imaging and therapeutic technology recently. The critical challenge here is to stabilize the system beyond the pull-in voltage considering imposed perturbations. The CMUT system, on the other hand, has a low range of travel and it is intrinsically unstable, which can result in a pull-in phenomenon. Consequently, in order to use the CMUT systems in a variety of medical applications that require high tuning ratio, a closed-loop control technique has been designed for these systems aims at increasing the maximum capacitance and enhancing tunability as well. In this study, using the closed-loop control, the resistance of micro plate against the pull-in phenomenon has been examined. Also, in the description of the system a more accurate nonlinear modeling has been considered in the presence of an under-actuated sliding model control strategy with finite convergence time. Beside, adaptive protocols with unknown upper bounds have been designed to compensate the effects of uncertainty, unmodeled dynamics and external disturbances. The performance of controller in terms of improving output pressure, stabilizing the CMUT and its robustness to imposed perturbations have been investigated. Finally, numerical simulations are presented to verify the usefulness and applicability of the proposed control strategy.


2021 ◽  
Vol 11 (15) ◽  
pp. 7061
Author(s):  
Qiufeng Yan ◽  
Yongkang Yin ◽  
Wanting Sun ◽  
Jun Fu

Piezoelectric pump design is regarded as a hot research topic in the microfluidic field, and has been applied in liquid cooling, precision machinery and other relevant domains. The valveless piezoelectric pump becomes an important branch of the piezoelectric pump, because it successfully avoids the problem of “pump-lagging of valve” during the valve piezoelectric pump processing. This paper summarizes the development of valveless piezoelectric pumps, and introduces some different configurations of valveless piezoelectric pumps. The structure and material of all kinds of valveless piezoelectric pumps are elaborated in detail, and also the output performance of the pump is evaluated and analyzed with the variations in flow rate and output pressure as reference. By comparing the flow of different types of valveless piezoelectric pumps, the application of valveless piezoelectric pumps is also illustrated. The development tendency of the valveless piezoelectric pump is prospected from the perspective of structure design and machining methods, which is expected to provide novel ideas and guidance for future research.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4786
Author(s):  
Eyglis Ledesma ◽  
Iván Zamora ◽  
Arantxa Uranga ◽  
Núria Barniol

This paper presents a multielement annular ring ultrasound transducer formed by individual high-frequency PMUTs (17.5 MHz in air and 8.7 MHz in liquid) intended for high-precision axial focalization and high-performance ultrasound imaging. The prototype has five independent multielement rings fabricated by a monolithic process over CMOS, allowing for a very compact and robust design. Crosstalk between rings is under 56 dB, which guarantees an efficient beam focusing on a range between 1.4 mm and 67 µm. The presented PMUT-on-CMOS annular array with an overall diameter down to 669 µm achieves an output pressure in liquid of 4.84 kPa/V/mm2 at 1.5 mm away from the array when the five channels are excited together, which is the largest reported for PMUTs. Pulse-echo experiments towards high-resolution imaging are demonstrated using the central ring as a receiver. With an equivalent diameter of 149 µm, this central ring provides high receiving sensitivity, 441.6 nV/Pa, higher than that of commercial hydrophones with equivalent size. A 1D ultrasound image using two channels is demonstrated, with maximum received signals of 7 mVpp when a nonintegrated amplifier is used, demonstrating the ultrasound imaging capabilities.


Sign in / Sign up

Export Citation Format

Share Document