An Improved Level-Set-Based Immersed Boundary Reconstruction Method for Computing Bio-Inspired Underwater Propulsion

2021 ◽  
Author(s):  
Yu Pan ◽  
Haibo Dong ◽  
Wei Zhang

Abstract The immersed boundary method (IBM) has been widely employed to study bio-inspired underwater propulsion which often involves the high Reynolds number, complex body morphologies and large computational domain. Due to these problems, the immersed boundary (IB) reconstruction can be very costly in a simulation. Based on our previous work, an improved level-set-based immersed boundary method (LS-IBM) has been developed in this paper by introducing the narrow-band technique. Comparing with the previous LS-IBM, the narrowband level-set-based immersed boundary method (NBLS-IBM) is only required to propagate the level set values from the points near the boundaries to all the points in the narrow band. This improvement reduces the computational cost from O((LD/Δx)3) to O(k(LD/Δx)2). By simulating a steady-swimming Jackfish-like body, the consistency and stability of the new reconstruction method in the flow solver have been verified. Applications to a dolphin-like body swimming and a shark-like body swimming are used to demonstrate the efficiency and accuracy of the NBLS-IBM. The time for reconstructions shows that the reconstruction efficiency can increase up to 64.6% by using the NBLS-IBM while keeping the accuracy and robustness of the original LS-IBM. The vortex wake of the shark-like body in steady swimming shows the robustness, fastness and compatibility of the NBLS-IBM to our current flow solver.

Author(s):  
Rey DeLeon ◽  
Kyle Felzien ◽  
Inanc Senocak

A short-term wind power forecasting capability can be a valuable tool in the renewable energy industry to address load-balancing issues that arise from intermittent wind fields. Although numerical weather prediction models have been used to forecast winds, their applicability to micro-scale atmospheric boundary layer flows and ability to predict wind speeds at turbine hub height with a desired accuracy is not clear. To address this issue, we develop a multi-GPU parallel flow solver to forecast winds over complex terrain at the micro-scale, where computational domain size can range from meters to several kilometers. In the solver, we adopt the immersed boundary method and the Lagrangian dynamic large-eddy simulation model and extend them to atmospheric flows. The computations are accelerated on GPU clusters with a dual-level parallel implementation that interleaves MPI with CUDA. We evaluate the flow solver components against test problems and obtain preliminary results of flow over Bolund Hill, a coastal hill in Denmark.


2021 ◽  
pp. 110630
Author(s):  
Seiji Kubo ◽  
Atsushi Koguchi ◽  
Kentaro Yaji ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
...  

Computation ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 50
Author(s):  
Jonatas Borges ◽  
Marcos Lourenço ◽  
Elie Padilla ◽  
Christopher Micallef

The immersed boundary method has attracted considerable interest in the last few years. The method is a computational cheap alternative to represent the boundaries of a geometrically complex body, while using a cartesian mesh, by adding a force term in the momentum equation. The advantage of this is that bodies of any arbitrary shape can be added without grid restructuring, a procedure which is often time-consuming. Furthermore, multiple bodies may be simulated, and relative motion of those bodies may be accomplished at reasonable computational cost. The numerical platform in development has a parallel distributed-memory implementation to solve the Navier-Stokes equations. The Finite Volume Method is used in the spatial discretization where the diffusive terms are approximated by the central difference method. The temporal discretization is accomplished using the Adams-Bashforth method. Both temporal and spatial discretizations are second-order accurate. The Velocity-pressure coupling is done using the fractional-step method of two steps. The present work applies the immersed boundary method to simulate a Newtonian laminar flow through a three-dimensional sudden contraction. Results are compared to published literature. Flow patterns upstream and downstream of the contraction region are analysed at various Reynolds number in the range 44 ≤ R e D ≤ 993 for the large tube and 87 ≤ R e D ≤ 1956 for the small tube, considerating a contraction ratio of β = 1 . 97 . Comparison between numerical and experimental velocity profiles has shown good agreement.


Author(s):  
Claudia Günther ◽  
Matthias Meinke ◽  
Wolfgang Schröder

In this work, a Cartesian-grid immersed boundary method using a cut-cell approach is applied to three-dimensional in-cylinder flow. A hierarchically coupled level-set solver is used to capture the boundary motion by a signed distance function. Topological changes in the geometry due to the opening and closing events of the valves are modeled consistently using multiple signed distance functions for the different components of the engine and taking advantage of a level-set reinitialization method. A continuous discretization of the flow equations in time near the moving interfaces is used to prevent nonphysical oscillations. To ensure an efficient implementation, independent grid adaptation for the flow and the level-set grid is applied. A narrow band approach and an efficient joining/splitting algorithm for the level-set functions minimize the computational overhead to track multiple interfaces. The ability of the current method to handle complex 3D setups is demonstrated for the interface capturing and the flow solution in a three-dimensional piston engine geometry.


Author(s):  
J. P. Thomas ◽  
O. Le´onard

Capturing a level of modeling of the flow inside a multi-stage turbomachine, such as unsteadiness for example, can be done at different degrees of details, either by capturing all deterministic features of the flow with a pure unsteady method or by settling for an approximated solution at a lower computational cost. The harmonic methods stand in this second category. Amongst them the “Nonlinear Harmonic Method” from He revealed the most efficient. This method consists of solving the fully nonlinear 3D steady problem and a linearized perturbation system in the frequency domain. As it has been shown by the authors that the circumferential variations exhibit a harmonic behavior, it is proposed here to adapt this method to the through-flow model, where the main nonlinear system would be the common throughflow equations and the auxiliary system would give access to the circumferential stresses. As the numerical local explicit impermeability conditions are unsupported by Fourier series, the adaptation of this technique to the throughflow model passes through a reformulation of the blade effect by a smooth force field as in the “Immersed Boundary Method” from Peskin. A simple example of an inviscid flow around a cylinder will illustrate the preceding developments, bringing back the mean effect of the circumferential non uniformities into the meridional flow.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
J. P. Thomas ◽  
O. Léonard

Capturing a level of modeling of the flow inside a multistage turbomachine, such as unsteadiness for example, can be done at different levels of detail, either by capturing all deterministic features of the flow with a pure unsteady method or by settling for an approximated solution at a lower computational cost. The harmonic methods stand in this second category. Among them, the “nonlinear harmonic method” (NLHM) from He and Ning [1998, “Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines,” AIAA J., 36, pp. 2005–2012] revealed the most efficient. This method consists of solving the fully nonlinear 3D steady problem and a linearized perturbation system in the frequency domain. As it has been shown by the authors that the circumferential variations exhibit a harmonic behavior, it is proposed here to adapt the NLHM to the throughflow model, where the main nonlinear system would be the common throughflow equations and the auxiliary system would give access to the circumferential stresses. As the numerical local explicit impermeability conditions are unsupported by Fourier series, the adaptation of this technique to the throughflow model relies on a reformulation of the blade effect by a smooth force field as in the “immersed boundary method” from Peskin [2002, “The Immersed Boundary Method,” Acta Numerica, 11, pp. 1–39]. A simple example of an inviscid flow around a cylinder will illustrate the preceding developments, bringing back the mean effect of the circumferential nonuniformities into the meridional flow.


Sign in / Sign up

Export Citation Format

Share Document