Design Concepts for Directed Exit Flow in Micro Fuel Cells

Author(s):  
Wei Shi ◽  
Sang-Joon Lee

Miniature and micro fuel cells continue to advance as promising alternatives for efficient and portable electric power. This paper presents a study of experimental modifications to the exit flow configuration of microchannels used in small proton-exchange-membrane fuel cells. New concepts for exit geometry are presented, which promote effective water removal and provide reactant back-pressure in an efficient and self-contained manner. Cell assembly is designed such that reactants must necessarily flow laterally through the gas diffusion electrodes near the exit, rather than simply pass over the free backside surfaces of these electrodes. Multiple prototypes were produced using microfabrication techniques with channel sizes of 100 and 200 microns, and performance was tested using a hydrogen-air test station with programmable electronic load. One of the new concepts in particular showed a marked improvement from 28 mW/cm2 peak power density under baseline conditions to 37 mW/cm2 for the modified design under similar operating conditions. The design offers an opportunity for higher performance in miniature fuel cells with low gas consumption and no additional cost.

Author(s):  
Shengjie Ye ◽  
Yuze Hou ◽  
Xing Li ◽  
Kui Jiao ◽  
Qing Du

AbstractA three-dimensional multicomponent multiphase lattice Boltzmann model (LBM) is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells. The gas diffusion layer (GDL) and microporous layer (MPL) are stochastically reconstructed with the inside dynamic distribution of oxygen and liquid water resolved, and the catalyst layer is simplified as a superthin layer to address the electrochemical reaction, which provides a clear description of the flooding effect on mass transport and performance. Different kinds of electrodes are reconstructed to determine the optimum porosity and structure design of the GDL and MPL by comparing the transport resistance and performance under the flooding condition. The simulation results show that gradient porosity GDL helps to increase the reactive area and average concentration under flooding. The presence of the MPL ensures the oxygen transport space and reaction area because liquid water cannot transport through micropores. Moreover, the MPL helps in the uniform distribution of oxygen for an efficient in-plane transport capacity. Crack and perforation structures can accelerate the water transport in the assembly. The systematic perforation design yields the best performance under flooding by separating the transport of liquid water and oxygen.


2021 ◽  
Vol 12 (3) ◽  
pp. 106
Author(s):  
Fengxiang Chen ◽  
Liming Zhang ◽  
Jieran Jiao

The durability and output performance of a fuel cell is highly influenced by the internal humidity, while in most developed models of open-cathode proton exchange membrane fuel cells (OC-PEMFC) the internal water content is viewed as a fixed value. Based on mass and energy conservation law, mass transport theory and electrochemistry principles, the model of humidity dynamics for OC-PEMFC is established in Simulink® environment, including the electrochemical model, mass flow model and thermal model. In the mass flow model, the water retention property and oxygen transfer characteristics of the gas diffusion layer is modelled. The simulation indicates that the internal humidity of OC-PEMFC varies with stack temperature and operating conditions, which has a significant influence on stack efficiency and output performance. In order to maintain a good internal humidity state during operation, this model can be used to determine the optimal stack temperature and for the design of a proper control strategy.


2021 ◽  
Vol 515 ◽  
pp. 230655
Author(s):  
Yange Yang ◽  
Xiangyang Zhou ◽  
Fumin Tang ◽  
Bing Li ◽  
Pingwen Ming ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document