Modeling of Fluid Behavior and Calculation of the Permeability of the Gas Diffusion Layer in PEM Fuel Cell Using Lattice Boltzmann Method

Author(s):  
Y. Gao

In the current work, a lattice Boltzmann method (LBM) is developed to study the fluid flow through digitally reconstructed 3D models of carbon paper GDLs generated by x-ray computed tomography, and the research on permeability calculation in the gas diffusion layer is also included. The methods involves the generation of a 3D digital model of a carbon paper GDL as manufactured using x-ray images acquired through x-ray micro-tomography at a resolution of 1.74 microns. The reconstructed 3D images then read into the LB model in order to predict three orthogonal permeability tensors when pressure is prescribed in the different flow direction. The Lattice Boltzmann method (LBM), an evolving pore-scale modeling approach, has received increasing attention in computational fluid dynamics. In the LBM, fluid is represented by a distribution of particles moving on a regular lattice. The LBM is extremely appealing in porous medium simulation, because the bounce-back boundary condition is efficient to treat solid boundary. It can deal with the boundary condition more easily than other tradition method. At the inlet/outlet boundaries, a pressure boundary condition is applied. This study characterizes the relationships between anisotropic permeability and porosity for gas diffusion layer, where hydrodynamics is analyzed in detail. The results indicate that the LBM is powerful and is able to provide excellent estimation on the permeability in a porous medium. The calculated permeability is in good agreement with existing measurements. The relationship between the permeability and the porosity is fitted well with the Kozeny-Carman equation and existing results.

2014 ◽  
Vol 48 (1) ◽  
pp. 93-101 ◽  
Author(s):  
F. Jinuntuya ◽  
R. Chen ◽  
H. Ostadi ◽  
K. Jiang ◽  
Y. Gao ◽  
...  

2017 ◽  
Vol 80 (8) ◽  
pp. 187-195 ◽  
Author(s):  
Pongsarun Satjaritanun ◽  
Sirivatch Shimpalee ◽  
John W. Weidner ◽  
Shinichi Hirano ◽  
Zijie Lu ◽  
...  

Author(s):  
Yuan Gao

The gas diffusion layers (GDLs) are key components in proton exchange membrane fuel cells and understanding fluid flow through them plays a significant role in improving fuel cell performance. We used a combination of multiple-relaxation time (MRT) lattice Boltzmann method (LBM) and X-ray micro tomography imaging technology to compare results on dependence of the permeability calculation on the different system size of the computational gas diffusion layer sample. The micro-structures of the carbon paper (HP_1.76) and carbon cloth (HP_1.733) GDL were all digitizing 3D images acquired by X-ray computed micro-tomography at a resolution of 1.76 and 1.733 microns meter respectively, and the fluid flow was simulated by applying pressure gradient in both the through-plane and in-plane direction respectively. The lattice Boltzmann method for permeability calculation has already been tested in our previous work. In this work, we will focus on the permeability calculation of the realistic gas diffusion layer samples depend on the different size samples. The results show the permeability increases with fluctuations as the porosity rises. All the permeability and porosity converge to the value of large size sample that can be regarding a representative volume element. As the porosity and permeability of these Porous samples differs significantly for each other, the anisotropic permeability is nearly same for each one. We can choose part of the sample to calculate the characters if the sample is too big to calculate. We systematically study the effect of system size and periodic boundary condition and validate Darcy’s law from the linear dependence of the flux on the body force exerted.


Sign in / Sign up

Export Citation Format

Share Document