Development of Direct Carbonate Fuel Cell Systems for Achieving Ultra High Efficiency

Author(s):  
Hossein Ghezel-Ayagh ◽  
Joseph McInerney ◽  
Ramki Venkataraman ◽  
Mohammad Farooque ◽  
Robert Sanderson

FuelCell Energy, Inc (FCE) has developed products based on its Direct FuelCell® (DFC®) technology with efficiencies near 50 percent based on lower heating value of (LHV) of natural gas. DFC is an internally reformed molten carbonate fuel cell (MCFC) which operates in the 550–700 C range. The combination of the internal reforming of methane and atmospheric pressure and moderately high temperature of operation has resulted in very simple power plant system configurations. Recently, FCE has developed system concepts to further increase the net electric efficiency to beyond 60% efficiency in subMW and MW class power plants. One of these system concepts is the arrangement of the fuel cell stacks in series for very high utilization of fuel in the stacks. Although, in principle, the concept of fuel cell stacks in series is very simple, the implementation of the concept in the actual hardware poses challenges requiring innovative solutions. These challenges include concerns with thermo-mechanical issues, flow and utilization patterns within the fuel cell stacks, and management of the pressure balance between the anode-and-cathode. To address, these issues, various analytical tools including system-level modeling and simulation and Computational Fluid Dynamics (CFD) were utilized. FCE has developed a comprehensive fuel cell stack operation simulation model including hydrodynamics, kinetics, electro-chemical, and heat transfer mechanisms to investigate and optimize the design for performance as well as endurance. Various system configurations were developed which included methods for fueling the second tier stacks in the series. System simulation studies using first principle mass and energy conversation laws were performed. Parametric studies were completed. Subsequent to the system modeling results, the fuel cell stacks operations were analyzed using the Comprehensive Stack Simulation model. The CFD modeling of the fuel cell stacks were performed in support of the system simulation parametric studies. The results of the CFD modeling provided insight to the thermal and flow profiles of both first and second tier stacks in series. The net outcome of the investigation was the design of the system which met the goals of ultra high efficiency and yet complied with the thermo-mechanical requirements of the fuel cell stack components. In this paper, FCE will describe various system options for the very high efficiency systems, the issues related to the design, and the practical solutions to overcome the issues.

Author(s):  
Hossein Ghezel-Ayagh ◽  
Joseph McInerney ◽  
Ramki Venkataraman ◽  
Mohammad Farooque ◽  
Robert Sanderson

FuelCell Energy, Inc. (FCE) has developed products based on its Direct FuelCell® (DFC®) technology with efficiencies near 50% based on lower heating values of natural gas. DFC is an internally reformed molten carbonate fuel cell, which operates in the 550–700°C range. The combination of the internal reforming of methane and atmospheric pressure and moderately high temperature of operation has resulted in very simple power plant system configurations. Recently, FCE has developed system concepts to further increase the net electric efficiency to beyond 60% efficiency in sub-MW and MW class power plants. One of these system concepts is the arrangement of the fuel cell stacks in series for very high utilization of fuel in the stacks. Although, in principle, the concept of fuel cell stacks in series is very simple, the implementation of the concept in the actual hardware poses challenges requiring innovative solutions. These challenges include concerns with thermomechanical issues, flow and utilization patterns within the fuel cell stacks, and management of the pressure balance between the anode and the cathode. To address these issues, various analytical tools, including system-level modeling and simulation and computational fluid dynamics (CFD), were utilized. FCE has developed a comprehensive fuel cell stack operation simulation model including hydrodynamics, kinetics, electrochemical, and heat transfer mechanisms to investigate and optimize the design for performance as well as endurance. Various system configurations were developed, which included methods for fueling the second tier stacks in the series. System simulation studies using first principle mass and energy conversation laws were performed. Parametric studies were completed. Subsequent to the system modeling results, the fuel cell stack operations were analyzed using the comprehensive stack simulation model. The CFD modeling of the fuel cell stacks was performed in support of the system simulation parametric studies. The results of the CFD modeling provided insight to the thermal and flow profiles of both first and second tier stacks in series. The net outcome of the investigation was the design of the system, which met the goals of ultrahigh efficiency and yet complied with the thermomechanical requirements of the fuel cell stack components. In this paper, FCE will describe various system options for the very high efficiency systems, the issues related to the design, and the practical solutions to overcome the issues.


Author(s):  
Zhiwen Ma ◽  
Ramakrishnan Venkataraman ◽  
Mohammad Farooque

Fuel cell power generation has evolved from the laboratory and aerospace applications, and moved onto practical applications of stationary power generation and automotive propulsion, driven by its high-energy efficiency and low emissions. The success of the fuel cell technology depends on its performance, cost, and reliability in commercial applications. Fuel Cell Energy Inc. (Danbury, CT) has been developing its direct fuel cell (DFC™) technology for power generation based on internal-reforming carbonate fuel cells. The DFC technology integrates the reforming reaction within the carbonate fuel cell stack. The integration of the reforming process inside the high temperature fuel cell stack simplifies the fuel cell power plant system and makes the fuel cell technology more accessible to the practical usage with low cost and high efficiency. The internal-reforming direct carbonate fuel cell technology has progressed steadily with improvement in performance and success in precommercialization applications. Modeling and simulation of the fuel cell performance played an important role in the fuel cell development. This paper will illustrate improved mathematical model for the direct carbonate fuel cell with the internal-reforming process and complete fuel cell physical and chemical descriptions for the simulation. The model has been validated with data from real-scale fuel cell stacks and applied to fuel cell stack design. More powerful and reliable DFC stack with improved performance has been developed with the assistance of this model. This paper will present progress in developing high performance stack designs aided by modeling efforts, its impact on power increase, and cost reduction in the DFC product.


Author(s):  
Jinmyun Jo ◽  
Xiaoyu Zhang ◽  
Ali Ansari

Abstract Fuel cell is an electrochemical device that converts fuel into electricity. Polymer electrolyte membrane fuel cells (PEMFCs) have been used for ground transportation due to its high efficiency and zero carbon emission. When it comes to unmanned aerial vehicles (UAVs), PEMFCs can support much longer flight endurance than internal combustion engines and batteries do. However, a lightweight PEMFC stack is required in order to carry enough payload for UAVs. In this research, a lightweight fuel cell stack was developed and fabricated based on the Horizon fuel cell stack. The stack components, including end plates, bipolar plates, and interconnects were redesigned and fabricated to replace those heavy components. Additive manufacturing (3D printing) and electroplating were used to fabricate bipolar plates and interconnects, whereas the end plates were machined from Garolite XX plates. The fabricated lightweight PEMFC stacks were tested using a Scribner 850e Fuel Cell Test System. The lightweight stack assembled with six electroplated bipolar plates showed that the maximum power density estimated was 3.514 W/cm2 with 4.5 V and 1.6 A/cm2 conditions for 100 ml/min of H2. The same fuel cell stack tested at 200 ml/min and 300 ml/min showed higher maximum power densities than 100 ml/min. The presentation includes design and fabrication, performance characterization, weight reduction strategy, and future work.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Arkadiusz Szczęśniak ◽  
Jarosław Milewski ◽  
Łukasz Szabłowski ◽  
Olaf Dybiński ◽  
Kamil Futyma

Abstract Molten carbonate fuel cells (MCFCs) offer several advantages that are attracting an increasingly intense research and development effort. Recent advances include improved materials and fabrication techniques as well as new designs, flow configurations, and applications. Several factors are holding back large-scale implementation of fuel cells, though, especially in distributed energy generation, a major one being their long response time to changing parameters. Alternative mathematical models of the molten carbonate fuel cell stack have been developed over the last decade. This study investigates a generic molten carbonate fuel cell stack with a nominal power output of 1 kWel. As daily, weekly, and monthly variations in the electrical power load are expected, there is a need to develop numerical tools to predict the unit’s performance with high accuracy. Hence, a fully physical dynamic model of an MCFC stack was developed and implemented in aspen hysys 10 modeling software to enable a predictive analysis of the dynamic response. The presented model exhibits high accuracy and accounts for thermal and electrochemical processes and parameters. The authors present a numerical analysis of an MCFC stack in emergency scenarios. Further functionality of the model, which was validated using real operational data, is discussed.


Sign in / Sign up

Export Citation Format

Share Document