Optimizing Operation of Stationary Fuel Cell Systems (FCS) Within District Cooling and Heating Networks

Author(s):  
Whitney G. Colella

We evaluate innovative design, installation, and control strategies for generating combined cooling, heating, and electric power (CCHP) with fuel cell systems (FCS). The addition of an absorptive cooling cycle allows unrecovered FCS heat to be converted into cooling power, such as for air-conditioning. For example, unrecovered low temperature (80–160°C) heat can be used to drive absorption chillers to create a chilled water stream to cool building spaces. Compared with separate devices that individually generate electricity, heat, and cooling power, such CCHP FCS can reduce feedstock fuel consumption and the resulting greenhouse gas emissions (GHG) by at least 30%. We develop economic and environmental models that optimize the installed capacity of CCHP FCS to minimize either global carbon dioxide (CO2) emissions or global energy costs. Our models evaluate innovative engineering design, installation, and control strategies not commonly pursued by industry, and identify strategies most beneficial for reducing CO2 emissions or costs. Our models minimize costs for building owners consuming cooling power, electricity, and heat by changing the installed capacity of the FCS and by changing FCS operating strategies. Our models optimize for a particular location, climatic region, building load curve set, FCS type, and competitive environment. Our models evaluate the benefits and drawbacks of pursuing more innovative FCS operating strategies; these include 1) connecting FCS to distribution networks for cooling power, heat, and electricity; 2) implementing a variable heat-to-power ratio, to intentionally produce additional heat to meet higher heat demands; 3) designing in the ability to tune the quantity of cooling power from the absorption chiller compared with the amount of recoverable heat from the FCS; and 4) employing the ability to load-follow demand for cooling, heat, or electricity. We base our datum design conditions on measured data describing generator performance in-use, and on measured data describing real-time electricity, heating, and cooling demand over time. A unique feature of our data sets is that the space cooling demand is directly measured and distinguishable from electricity demand (unlike as with standard air conditioning systems). We report results for optimal installed capacities and optimal FCS operating strategies. We generalize these results so that they are applicable to a wide-range of environments throughout the world.

Author(s):  
Whitney G. Colella

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of 1) minimizing electricity and heating costs for building owners and 2) reducing emissions of the primary greenhouse gas (GHG) — carbon dioxide (CO2). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals — energy cost savings for building owners and CO2 emission reductions. These types of models are crucial for identifying cost and CO2 optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both “business-as-usual” and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO2 emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.


2017 ◽  
Vol 359 ◽  
pp. 119-133 ◽  
Author(s):  
Etienne Dijoux ◽  
Nadia Yousfi Steiner ◽  
Michel Benne ◽  
Marie-Cécile Péra ◽  
Brigitte Grondin Pérez

Author(s):  
Gerry D. Agnew ◽  
James Townsend ◽  
Robert R. Moritz ◽  
Michele Bozzolo ◽  
Steve Berenyi ◽  
...  

Rolls-Royce Fuel Cell Systems (RRFCS) is developing a low cost 1MW fuel cell hybrid system package, supported by a prototype demonstration of a 250kW module in 2006. This paper describes the detailed design process that has been carried out to produce the fuel cell stack, tailored turbo-machinery and other plant components for this hybrid. Progress in demonstrating components is described. Component interfacing, operability and control challenges have been assessed prior to assembly of the complete system and are reviewed. The baseline plant will be highly efficient compared to incumbent power generation technologies but is primarily optimised around cost-reduction. Evolution of the product will include opportunities for further increases in efficiency and power density. Opportunities for improvement are discussed.


Author(s):  
Whitney G. Colella ◽  
Stephen H. Schneider ◽  
Daniel M. Kammen ◽  
Aditya Jhunjhunwala ◽  
Nigel Teo

Stationary combined heat and power (CHP) fuel cell systems (FCSs) can provide electricity and heat for buildings, and can reduce greenhouse gas (GHG) emissions significantly if they are configured with an appropriate installation and operating strategy. The Maximizing Emission Reductions and Economic Savings Simulator (MERESS) is an optimization tool that was developed to allow users to evaluate avant-garde strategies for installing and operating CHP FCSs in buildings. These strategies include networking, load following, and the use of variable heat-to-power ratios, all of which commercial industry has typically overlooked. A primary goal of the MERESS model is to use relatively inexpensive simulation studies to identify more financially and environmentally effective ways to design and install FCSs. It incorporates the pivotal choices that FCS manufacturers, building owners, emission regulators, competing generators, and policy makers make, and empowers them to evaluate the effect of their choices directly. MERESS directly evaluates trade-offs among three key goals: GHG reductions, energy cost savings for building owners, and high sales revenue for FCS manufacturers. MERESS allows users to evaluate these design trade-offs and to identify the optimal control strategies and building load curves for installation based on either 1) maximum GHG emission reductions or 2) maximum cost savings to building owners. Part I of II articles discusses the motivation and key assumptions behind MERESS model development. Part II of II articles discusses run results from MERESS for a California town and makes recommendations for further FCS installments (Colella 2008 (a)).


Author(s):  
Fabian Mueller ◽  
Brian Tarroja

Solid oxide fuel cells (SOFCs) are attractive emerging energy conversion devices. Particularly, SOFC electrochemically react fuel and oxygen to generate electricity efficiently with ultra low pollutant emissions. For SOFC systems to be widely utilized in the future, SOFC will have to be effectively integrated with a wide array of energy resources and conversion devices including base-loaded nuclear and coal as well as renewables. Load following generators and/or energy storage will be required to manage intermittent renewables. Base-loaded fuel cell systems (i.e., present day SOFCs) that use potentially dispatchable fuel resources will be increasingly difficult to market. Fuel generators such as SOFCs that can load follow with ultra-low emissions will become increasingly attractive, particularly in future grid scenarios with increased renewables. Simulations results are shown in the paper that demonstrates the intermittent challenge of renewables and the potential for SOFC systems to provide load following capability. SOFCs have the potential to be very attractive load following generators which achieve high efficiencies at part load with low emissions. Research and development is needed to understand solid oxide fuel cell system and control development to minimize dynamics that can degrade the fuel cell during load following. Understanding of degradation of optimally controlled fuel cell is needed to fully understand the true potential of SOFC systems in future grids with increased intermittent renewable penetration.


Sign in / Sign up

Export Citation Format

Share Document