Investigation of Gas Diffusion Layer Properties Using X-Ray Microtomography

Author(s):  
Sadegh Hasanpour ◽  
Andre Phillion ◽  
Mina Hoorfar

An essential part of proton exchange membrane fuel cells (PEMFCs) is the gas diffusion layer (GDL), which provides pathways for by-products to be removed from PEMFCs. One of the main properties of GDLs is porosity. The two widely used experimental methods for finding the porosity of GDLs are mercury intrusion porosimetry (MIP) and method of standard porosimetry (MSP). In addition to these methods, the porosity of GDLs can be calculated based on the high resolution 3D images that are acquired using X-ray microtomography (μXCT) as shown in recent studies (e.g., [7,12]). Despite the general success of using μXCT to measure GDL porosity, different porosity values have been reported for similar GDLs. These variations are due to different assumptions made for determining the surface of the sample, and hence, its external dimensions. In this research, current methods used for calculating porosity of GDLs from μXCT images are discussed, and a new surface identification method based on a rolling ball algorithm is introduced. The main advantage of this new method is that variations in surface topology or roughness are taken into account when calculating porosity. The new method is not only applicable to GDLs, but can be applied to characterize a wide range of highly porous media.

2021 ◽  
Vol 515 ◽  
pp. 230655
Author(s):  
Yange Yang ◽  
Xiangyang Zhou ◽  
Fumin Tang ◽  
Bing Li ◽  
Pingwen Ming ◽  
...  

2014 ◽  
Vol 21 (6) ◽  
pp. 1319-1326 ◽  
Author(s):  
S. H. Eberhardt ◽  
F. Marone ◽  
M. Stampanoni ◽  
F. N. Büchi ◽  
T. J. Schmidt

Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40–100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.


Sign in / Sign up

Export Citation Format

Share Document