Large-Eddy Simulation of a Swirl-Stabilized, Lean Direct Injection Spray Combustor

Author(s):  
Mehmet Kırtas¸ ◽  
Nayan Patel ◽  
Vaidyanathan Sankaran ◽  
Suresh Menon

Large-eddy simulation (LES) of a lean-direct injection (LDI) combustor is reported in this paper. The full combustor and all the six swirl vanes are resolved and both cold and reacting flow simulations are performed. Cold flow predictions with LES indicate the presence of a broad central recirculation zone due to vortex breakdown phenomenon near the dump plane and two corner recirculation zones at the top and bottom corner of the combustor. These predicted features compare well with the experimental non-reacting data. Reacting case simulated a liquid Jet-A fuel spray using a Lagrangian approach. A three-step kinetics model that included CO and NO is used for the chemistry. Comparison of mean velocity field predicted in the reacting LES with experiments shows reasonable agreement. Comparison with the non-reacting case shows that the centerline recirculation bubble is shorter but more intense in the reacting case.

Author(s):  
M. Carreres ◽  
L. M. García-Cuevas ◽  
J. García-Tíscar ◽  
M. Belmar-Gil

Abstract During the last decades, many efforts have been invested by the scientific community in minimising exhaust emissions from aeronautical gas turbine engines. In this context, many advanced ultra-low NOx combustion concepts, such as the Lean Direct Injection treated in the present study, are being developed to abide by future regulations. Numerical simulations of these devices are usually computationally expensive since they imply a multi-scale problem. In this work, a non-reactive Large Eddy Simulation of a gaseous-fuelled, radial-swirled Lean-Direct Injection (LDI) combustor has been carried out through the OpenFOAM Computational Fluid Dynamics (CFD) code by solving the complete inlet flow path through the swirl vanes and the combustor. The geometry considered is the gaseous configuration of the CORIA LDI combustor, for which detailed measurements are available. Macroscopical analysis of the main turbulent features related to the swirling flow and the generated Central Recirculation Zone (CRZ) are well established in the literature. Nevertheless, a more in-depth characterization is still required in this area of active research since theory and experimental data are not yet able to predict which unstable mode dominates the flow. This work aims at using Large Eddy Simulation for a complete characterisation of the unsteady flow structures generated within the combustion chamber of a gaseous methane injection immersed in a strong non-reactive swirling flow field. To do so, a spectral analysis of the flow field is performed to identify the frequency, intensity and instabilities associated to the phenomena occurring at the swirler outlet region. A coherent structure known as Precessing Vortex Core (PVC) is identified both at the inner and the outer shear layers, resulting in a periodic disturbance of the pressure and velocity fields. The pressure and velocity fluctuations predicted by the CFD code are used to compute the spectral signatures through the Sound Pressure Level (SPL) amplitude at multiple locations. This allows investigating both the complex behaviour of the PVC and its associated acoustic phenomena. The acoustic characteristics computed by the numerical model are first validated qualitatively by comparing the spectrum with available experimental data. In this way, the use of dimensionless numbers to characterise the most energetic structures is coherent with the experimental observations and the characteristics of the PVC. Then, the numerical identification of the main acoustic modes in the chamber through Dynamic Mode Decomposition (DMD) allows overcoming the Fast Fourier Transform (FFT) shortcomings and better understanding the propagation of the hydrodynamic instability perturbations. This investigation on the main non-reacting swirling flow structures inside the combustor provides a suitable background for further studies on combustion instability mechanisms.


2021 ◽  
Author(s):  
Marcos Carreres ◽  
Luis Miguel Garcia-Cuevas ◽  
Jorge Garc\xeda-T\xedscar ◽  
Mario Belmar

Author(s):  
N Kharoua ◽  
L Khezzar

Large eddy simulation of turbulent flow around smooth and rough hemispherical domes was conducted. The roughness of the rough dome was generated by a special approach using quadrilateral solid blocks placed alternately on the dome surface. It was shown that this approach is capable of generating the roughness effect with a relative success. The subgrid-scale model based on the transport of the subgrid turbulent kinetic energy was used to account for the small scales effect not resolved by large eddy simulation. The turbulent flow was simulated at a subcritical Reynolds number based on the approach free stream velocity, air properties, and dome diameter of 1.4 × 105. Profiles of mean pressure coefficient, mean velocity, and its root mean square were predicted with good accuracy. The comparison between the two domes showed different flow behavior around them. A flattened horseshoe vortex was observed to develop around the rough dome at larger distance compared with the smooth dome. The separation phenomenon occurs before the apex of the rough dome while for the smooth dome it is shifted forward. The turbulence-affected region in the wake was larger for the rough dome.


2021 ◽  
Vol 932 ◽  
Author(s):  
Changping Yu ◽  
Zelong Yuan ◽  
Han Qi ◽  
Jianchun Wang ◽  
Xinliang Li ◽  
...  

Kinetic energy flux (KEF) is an important physical quantity that characterizes cascades of kinetic energy in turbulent flows. In large-eddy simulation (LES), it is crucial for the subgrid-scale (SGS) model to accurately predict the KEF in turbulence. In this paper, we propose a new eddy-viscosity SGS model constrained by the properly modelled KEF for LES of compressible wall-bounded turbulence. The new methodology has the advantages of both accurate prediction of the KEF and strong numerical stability in LES. We can obtain an approximate KEF by the tensor-diffusivity model, which has a high correlation with the real value. Then, using the artificial neural network method, the local ratios between the real KEF and the approximate KEF are accurately modelled. Consequently, the SGS model can be improved by the product of that ratio and the approximate KEF. In LES of compressible turbulent channel flow, the new model can accurately predict mean velocity profile, turbulence intensities, Reynolds stress, temperature–velocity correlation, etc. Additionally, for the case of a compressible flat-plate boundary layer, the new model can accurately predict some key quantities, including the onset of transitions and transition peaks, the skin-friction coefficient, the mean velocity in the turbulence region, etc., and it can also predict the energy backscatters in turbulence. Furthermore, the proposed model also shows more advantages for coarser grids.


2016 ◽  
Vol 794 ◽  
pp. 798-833 ◽  
Author(s):  
Di Yang ◽  
Bicheng Chen ◽  
Scott A. Socolofsky ◽  
Marcelo Chamecki ◽  
Charles Meneveau

Characteristics of laboratory-scale bubble-driven buoyant plumes in a stably stratified quiescent fluid are studied using large-eddy simulation (LES). As a bubble plume entrains stratified ambient water, its net buoyancy decreases due to the increasing density difference between the entrained and ambient fluids. A large fraction of the entrained fluid eventually detrains and falls along an annular outer plume from a height of maximum rise (peel height) to a neutral buoyancy level (trap height), during which less buoyant scalars (e.g. small droplets) are trapped and dispersed horizontally, forming quasi-horizontal intrusion layers. The inner/outer double-plume structure and the peel/intrusion process are found to be more distinct for cases with small bubble rise velocity, while weak and unstable when the slip velocity is large. LES results are averaged to generate distributions of mean velocity and turbulent fluxes. These distributions provide data for assessing the performance of previously developed closures used in one-dimensional integral plume models. In particular, the various LES cases considered in this study yield consistent behaviour for the entrainment coefficients for various plume cases. Furthermore, a new continuous peeling model is derived based on the insights obtained from LES results. Comparing to previous peeling models, the new model behaves in a more self-consistent manner, and it is expected to provide more reliable performance when applied in integral plume models.


Sign in / Sign up

Export Citation Format

Share Document